FINAL RESEARCH REPORT

INTERNATIONAL RESEARCH COLLABORATION OF MERCU BUANA YOGYAKARTA UNIVERSITY , INDONESIA AND CAPIZ STATE UNIVERSITY, PHILIPINES

THE QUALITY OF POST THAWING SPERMATOZOA OF INDIGENOUS INDONESIA CATTLE STORED USING ICE CUBE AND SALT AS AN ALTERNATIVE OF LIQUID NIROGEN

RESEARCH TEAM :

Ir. Ajat Sudrajat, S.Pt., M.Pt., IPP.NIDN 0512059Ir. Nur Rasminati, M.P.NIDN 0506036Ir. Setyo Utomo, M.P.NIDN 0016126Nurul Hidayat, S.Pt., M.Sc.NIDNDr. Maryneth B. Barrios, DVM, MSNIDNLeah A. IngallaNIDN

NIDN 051205950(Leader)NIDN 0506036401(Member)NIDN 0016126701(Member)NIDN(Member)NIDN(Member)NIDN(Member)NIDN(Member)

MERCU BUANA YOGYAKARTA UNIVERSITY NOVEMBER, 2021

APPROVAL PAGE

FINAL RESEARCH REPORT INTERNATIONAL RESEARCH COLLABORATION OF MERCU BUANA YOGYAKARTA UNIVERSITY AND CAPIZ STATE UNIVERSITY, PHILIPPINES

Tit	le of Research	:	The Quality of Post Thawing Spermatozoa of Indigenous Indonesia Cattle Stored using Ice Cube and Salt as an Alternative of Liquid Nitrogen
Co	de/Name of field of science	:	219/Livestock Biotechnology
Pri	ncipal researcher	:	
a.	Full name	:	Ir. Ajat Sudrajat, S.Pt., M.Pt., IPP.
b.	NIDN	:	0512059501
c.	Academic rank	:	Lecture Staff
d.	Study program	:	Animal Science
e.	Mobile phone	:	082240054084
f.	e-mail	:	sudrajatajat135@mail.ugm.ac.id ajat@mercubuana-yogya.ac.id sudrajatajat135@gmail.com
Me	mber of research (1)		
a.	Full name	:	Ir. Nur Rasminati, M.P.
b.	NIDN	:	0506036401
c.	University	:	Mercu Buana Yogyakarta University
Me	mber of research (2)		
d.	Full name	:	Ir. Setyo Utomo, M.P.
e.	NIDN	:	0016126701
f.	University	:	Mercu Buana Yogyakarta University
Me	mber of research (3)		
g.	Full name	:	Nurul Hidayat, S.Pt., M.Sc.
h.	NIDN	:	In process
i.	University	:	Mercu Buana Yogyakarta University

International partner (1)

a. Full name

- b. Name of institution
- c. Address of institution

International partner (2)

- a. Full name
- b. Name of institution

c. Address of institution Length of research period

Year of research

Total research funds

Research funds of current year

- Internal univ.fund
- External univ. fund

- : Dr. Maryneth B. Barrios, DVM, MS
- : Capiz State University
- : Iloilo East Coast-Capiz Rd, Pilar, 5804 Capiz, Philipina
- : Leah A. Ingalla
- : Capiz State University
- : Iloilo East Coast-Capiz Rd, Pilar, 5804 Capiz, Philipina
- : 6 month (January to June 2021)
- : First year
- : Rp. 121.000.000,- (Php 420.541)
- : Rp. 30.000.000,- (Php 109.133)
- : Rp. 91.000.000,- (Php 311.408)

Yogyakarta, 22 November 2021

Acknowledged, nanti Mildaryani, MP. 0020126001

Principal researcher,

Ir. Ajat Sudrajat, S.Pt., M.Pt., IPP. NIDN. 0512059501

S MERCU B	Approved,
Head of re-	earch institution LPPM
	A A A A A A A A A A A A A A A A A A A
5 • •	har
MASAI	NTRE SE MSC
NIPAT DA	7664152005011001

IDENTITY AND GENERAL INFORMATION

1. Research Title:

The Quality of Post Thawing Spermatozoa of Indigenous Indonesia Cattle Stored Using Ice Cube and Salt as an Alternative of Liquid Nirogen

2. Researchers

No	Name	Position	Expertise	Institution	Alocated Time (hour/week)
1	Ir. Ajat Sudrajat, S.Pt., M.Pt., IPP.	Head	Animal Technology	UMBY	20 hour/week
2	Nurul Hidayat, S.Pt., M.Sc.	Secretary	Animal Technology	UMBY	20 hour/week
3	Ir. Nur Rasminati, MP.	Treasurer	Animal Production	UMBY	20 hour/week
4	Ir. Setyo Utomo, MP.	Member	Animal Reproduction	UMBY	20 hour/week
5	Dr. Maryneth B. Barrios	Member	Veterinary Medicine/Animal Science	CAPZU	20 hour/week
6	Leah A. Ingalla	Member	Veterinary Medicine/Animal Science	CAPZU	20 hour/week

3. Research Object:

Frozen semen of Pasundan cattle (from East Java, Indonesia)

4. Time/Period :

Starts : March 2021 Ends : December 2021

5. The Proposed Budget to Directorate General of Research and Development

Cost from UMBY	: Rp. 30.000.000,- (Php 109.133)
Cost from CAPZU	: Rp. 91.000.000,- (Php 311.408)

6. Research Location

Laboratory of BIB Lembang, Bandung

Laboratory of Livestock Reproduction and Biotechnology of UMBY

7. Research Partner

Capiz State University address Iloilo East Coast-Capiz Rd, Pilar, 5804 Capiz, Philipina.

8. The Targeted Findings (explanation, method, theory, or anticipantion contributed to the field of study)

Find appropriate technology that is cheap and easy to apply, especially as a replacement for liquid nitrogen so that it does not depend on imports.

9. The Basic Contribution to the Field of Study

Improve the science of reproduction technology, especially in local cattle up breeding and the application of artificial insemination technology using the thawing method. Contribute to government programs in breeding and increasing the population of cattle to achieve national beef self-sufficiency and the development of local cattle throughout the archipelago.

10. The Targeted Journals:

International journal reputable (scopus)

11. Plan for Intellectual Property Right, Book, Prototype or Other Targeted Outcomes, the Targeted Year or the Completion Year :

It is planned that this research model/method will be in intellectual property rights after publication at the end of 2021.

APPROVAL PAGE	Pages
IDENTITY AND GENERAL INFORMATION	III
CONTENTS	V
ABSTRACT	VI
	1
Background	1
Research Objectives	3
Identification of the Problems	3
Research Contribution	4
LITERATURE REVIEW	6
Cattle	6
Frozen Cement Frozen	7
Characteristics of cow sperm	7
Sperm Motility Sperm	8
Semen Dilution	9
Sperm storage methods	
Artificial Insemination Artificial	10
MATERIALS AND METHODS	
Time and Place of Research	12
Materials and Methods	12
RESULTS AND DICUSSION	14
REFERENCE	20
APPENDICES	22
ATTACHMENT	

CONTENTS

ABSTRACT

The main obstacle in the implementation of Artificial Insemination (AI) is the absence of cheap and effective field tools or flasks that can maintain the quality of frozen sperm during AI implementation. So far, inseminators always use flasks with liquid nitrogen to bring frozen straw into the field. So that it is higher cost and ineffective. The purpose of this study was to determine the storage time of frozen sperm in a field thermos with ice cooling and table salt in various ratios of the effect on the quality of semen from Pasundan cattle from West Java. The research will be carried out from March to August 2021 at the Balai Inseminasi Buatan (BIB) Lembang, West Java and the Laboratory of Biotechnology and Reproduction, Universitas Mercu Buana Yogyakarta. The research used frozen semen straws in the form of mini straw from the Pasundan cattle breed, which was produced by the BIB Lembang. The research used an experimental method with a completely randomized design with a unidirectional pattern, namely ice and salt ratio with 3 replications. T0 for control, T1 for ice cubes + 30% salt, T2 for ice cubes + 40% salt and T3 for ice cubes + 50% salt. Each treatment is stored for 0, 2, 4, 6 hours. To determine the difference in motility in the treatment of the ratio of ice and salt in a field flask, analysis of variance was carried out. If there is a difference, continue with the Duncan's Multiple Range Test (DMRT) difference test. The use of storage media filled with liquid nitrogen had a higher motility rate (p<0.05) compared to a mixture of ice cubes and salt (T1, T2 and T3). The use of liquid nitrogen (T0) was higher viability (p<0.05) compared to a mixture of ice cubes and salt (T1, T2 and T3). However, the use of ice cubes and salt at all levels (T1, T2 and T3) showed no significant difference (p<0.05). Viability of spermatozoa decreased by 29.62%. The results showed that the average mass movement of spermatozoa ranged between good and sufficient categories, this could occur because treatment using salt and ice caused cold shock. Extreme temperature changes that occur, namely from a temperature of -196⁰C (liquid nitrogen temperature) to the temperature of the ice cube and salt treatment in the thermos, which is -15[°]C, make most of the spermatoza dead. T3 shown the best rwsults for the variable motility, viability and wave motion.

Key words : Pasundan Cattle, Ice cube, Salt, Quality of spermatozoa

INTRODUCTION

Background

The development of the livestock sub-sector plays a crucial role in supplying the nutritional needs of the Indonesian people, which in 2004 amounted to more than 220 million. The provision of nutritional needs derived from livestock products such as eggs, meat, and milk has not been fully provided domestically. Some products such as meat and milk still have to import from abroad (Anonymous, 2000). The development of the integrated livestock sub-sector at this time must be directed to the orientation of agrAIusiness and agro-industry. In line with this program, the use of superior seeds is necessary to ensure business continuity, both in productivity and business sustainability. The fulfillment of community needs for quality and sustainable livestock meat is really a solution to a problem that exists both at the community level and at the national level (Anonymous, 2000).

The appearance of livestock potential is fundamentally influenced by two main factors: genetic and environmental factors, including the overall maintenance management. It is known that the environment and adequate management handling or following the needs of the livestock will not give the expected production expression (quality or quantity) if the good genetic potential of livestock does not support it. Furthermore, vice versa, if the livestock has good genetic potential, it will not be expressed optimally if the maximum environment and management do not support it. Thus, these two factors should receive equal attention in the maintenance of livestock commodities. Raising livestock with high genetic value accompanied by good management will certainly provide optimal results both in terms of production and business efficiency (Syukur, DA, 2006).

Cows are livestock that is widely known by the general public, especially in rural areas. Cows in Indonesia are generally raised by farmers traditionally (from generation to generation), so that their development is fully in the midst of farmers (Utomo and Nur R., 2012). Beef cows are one of the resources for producing food in the form of meat, which has high economic value and is important for people's lives. A group of cattle can produce various kinds of needs, especially as a food ingredient in the form of meat and other by-products such as manure, leather, etc. (Sugeng, 2002). Furthermore, it is stated that based on their origins, cows are broadly classified into 3 groups, namely: Indicus bosses (Zebu cattle = humps), Taurus bosses (European cows), and Bos Sondaicus (bull bulls / BAIos cows).

The need for animal protein from livestock in Indonesia is 5.4 g / capita/day. Based on these needs, Indonesians must consume 9.6 kg/cap/year of meat, 3.5 kg/cap/year of eggs, and 4.6 kg/capita/year of milk. The field's real conditions show that the Indonesian people can only meet animal protein consumption from livestock, an average of 3.47 g / capita/day (Harmadji, 1999). Conservation of genetic resources needs to be carried out with two considerations, namely the increasing demand for livestock products, especially in developing countries as the FAO predicts a 2-fold increase in demand for meat in the 30 years from 2000 - to 2030 and the increasing demand for milk is more of two times, as well as the rapid reduction in almost all over the world of genetic resources (germplasm) (Subandriyo, 2006).

The implementation of AI (Artificial Insemination) in Indonesia began nationally in 1972. Through this AI activity, it is hoped that it will improve the genetic quality of local livestock breeds, so it is hoped that the cattle owned by the Indonesian people can gradually improve their genetic quality. In the development of national nurseries, the problems faced are how to increase the number of livestock breeds in good quality, the linkage and interdependence of breeding actors to provide livestock seeds in the number, type, and quality according to needs (Bahri, 2006). At the beginning of the AI implementation in Indonesia (1972-1973), using liquid semen (fresh). AI with fresh semen was felt to be very slow in development, so in 1973 with the help of frozen semen from the British and New Zealand governments, the use of frozen semen in straw (plastic straw) packaging was introduced. Since the use of frozen straws, AI development is very rapid to date, especially after the operation of BBAI in Lembang and Singosari as a producer of frozen straw, especially superior cow semen.

The main obstacle in implementing AI is the absence of cheap and effective field tools/flasks that can maintain the quality of frozen sperm in a straw when going to AI right. So far, inseminators always use flasks with liquid NITROGEN in them to bring frozen straw to the field. So that costs are higher and less effective because liquid NITROGEN is expensive and has limited availability. So it is necessary to create a tool with cheap cooling material but has the

ability to maintain the quality of frozen sperm in a relatively long time. For this reason, research activity was carried out with the title:

"The Quality of Post Thawing Spermatozoa of Indigenous Indonesia Cattle Stored using Ice CubeAnd Salt As An Alternative of Liquid Nitrogen"

Research Objectives

This study to determine the length of storage for frozen sperm in a field flask with ice and salt as a cooling agent in various ratios of the effect on semen quality.

Identification of the Problems

There are various ways for inseminators to carry the frozen straws of cow semen in the field when they are going to do AI. The implementation of AI in the field must use frozen sperm in a mini straw, which has excellent sperm quality to carry out fertilization. The decline in semen quality during the freezing process is low (-196°C) in liquid nitrogen and during storage is quite high at around 50%. This is worsened by the distance that is quite far from freezing with liquid nitrogen to the place of insemination, resulting in a decreased ability to fertilize.

One of the activities of spermatozoa is influenced by the temperature factor or the temperature of the environment. The normal spermatozoa activity occurs at 37 $^{\circ}$ C and will increase twofold at a temperature of about 46 $^{\circ}$ C, likewise at low temperatures, and their activity will decrease (Partodihardjo, 1992). This decrease in activity is the basic idea for spermatozoa storage both in the short and long term. Long-term spermatozoa storage decreases the temperature to -196 $^{\circ}$ C using liquid nitrogen refrigerant, and this method has been the guide for long-term sperm storage activities. Long-term sperm storage constraints using liquid nitrogen are the processing technique and the large cost required, especially with the high cost of liquid nitrogen and the high processing costs. Not everyone can do it, especially farmers.

Semen for the AI process can be divided into two, namely frozen semen and liquid semen. The AI technique with frozen semen is relatively easy to do. The equipment needed is in the form of a speculum (in the shape of a duck's beak) to open the vagina, an Artificial Insemination (AI) Gun to "shoot" the semen into the cervix, and plastic sit to place the straw (frozen semen package). The problem faced by using frozen cow semen for AI is liquid nitrogen availability in all corners of the country. Transporting frozen semen to the AI location with a flask containing liquid nitrogen is expensive and the minimal availability of liquid NITROGEN. This constraint is the background of this research activity, which aims to create a field flask as a container for frozen straws to the AI site using simple, inexpensive, and easily available materials in the field.

This decrease in sperm quality will be followed by the failure of AI in the field, which is indicated by the high S / C value. Actually, this problem has been resolved by the presence of a field flask that uses Liquid nitrogen. However, due to the relatively high price of liquid nitrogen and limited availability, the flask is less effective and wasteful. The existence of a device with cheap materials but has a high ability to store frozen sperm when brought to the field is needed.

Research Contribution

This research will usefull to Inseminator practitioners carrying out their duties so that sperm still has the optimal ability in the fertilization process after artificial insemination. The field flask made of ice and salt will increase the success of the AI in the field.

No	Туг	Target	
	Category	Sub category	
1	Scientific article	International/reputable international	Yes
	published in journal	Accredited National	No
		National ISSN	No
2	Invited speake inscientific	International	No
	meeting	National	No
3	Visiting lecture	International	No
4	Hak Kekayaan Intelektual	Paten	No
	(HKI)	Simple patent	
		Copyright	No
		Trademarks	No
		Trade secrets	No
		Industrial Product Design	No
		Geographical Indications	No
		Protection of Integrated Circuit Topography	No
	Appropriate Technology		Yes
	Model / prototype / design /	/ artwork / social engineering	Yes
	Textbook (ISBN) / report in	n book form	No
	Technology Readiness Lev	3	

Table 1. Plan for target achievement

RENSTRA AND ROAD MAP OF HIGHER EDUCATION RESEARCH

This research proposal refers to the Strategic Plan (Renstra) or Research Master Plan (RIP) of Mercu Buana University, Yogyakarta 2012-2016. Non-superior research, national research, and applied research are increasingly directed within the scope of international research. UMBY's Leading Research is oriented to "national independence and people's empowerment." Following the Rector's Decree: 124 a / Sk / VI / 2012, RIP UMB Y for the years 2012 - 2016 determined 5 excellent types of research, namely; (1) food security; Food for self-reliance and public health, (2) psychology and community empowerment (3) sustainable agriculture (4) business, cooperatives and MSMEs (5) cultural and community ethics.

Furthermore, the UMBY leading research Road Map and Animal Husbandry Road Map are listed in the following fishbone description:

LITERATURE REVIEW

Cattle

cattle are widely known by the general public, especially in rural areas. Cows in Indonesia are generally raised by farmers traditionally (from generation to generation) so that their development is fully in the farmers' hands (Utomo and Nur R., 2013). cattle are one of the resources for producing food in the form of meat, which has high economic value and is important for people's lives. A group of cattle can produce various kinds of needs, especially as a food ingredient in the form of meat and other by-products such as manure, leather, etc. (Utomo and Nur R, 2012). Furthermore, it is stated that based on their origin, cows are broadly classified into 3 groups, namely: Indicus bosses (Zebu cattle = humps), Bos Taurus (European cows), and Bos Sondaicus (Bull / Bos BAIos cows).

The systematics of cattle classification, according to Reksohadiprojo (1984) and Blakely and Bade (1992), are as follows:

Kingdom	: Animalia
Phyllum	: Chordata
Class	: Mamalia
Ordo	: Ungulata
Sub Ordo	: Artiodactyla
Familia	: Bovidae
Sub Familia	: Bovinae
Genus	: Bos
Species	: Bos Taurus, Bos Indicus, Bos Sondaicus.

Several tropical cattle breeds are quite popular and are widely available in Indonesia, namely Bali cattle, Madura cattle, Ongole cows, American Brahman cattle, etc. (Sugeng, 2003).

1. Bali cattle (Bos sondaicus = Bos BAIos = Banteng Wagner)

Are native Indonesian cattle descended from Bos Banteng or from the descendants of Bos Sondaicus who have experienced domestication (Siregar, 2003). Bali cow is unique because it is the only type of bull that is bred. This breed of cattle is used as working cattle, including the type of meat with a high percentage of meat (Reksohadiprojo, 1985).

- Madurese cattle Cattle are the result of a cross between the Sondaicus boss and the Indicus boss. Location of distrAlution in P. Madura and East Java. In Madura, these cows are kept purely. These cows include meat and work (Siregar, 2003).
- 3. Ongole Cattle (Bos Indicus = Nellore)

Ongole cattle originate from the Bos Indicus descendants who entered Indonesia from the IX X century and developed well in Sumba Island. Ongole cows are often crossed with female Javanese cows, which eventually resulted in a breed of PO cattle named SO (Sumba Ongole) (Murtidjo, 1990; Siregar, 1990).

 4. 4. Brahman Cattle Brahman Cattle are breeds of beef cattle that grow well in poor grazing areas and respond well to caged feed (Reksohadiprojo, 1985).

Frozen Cement Frozen

Semen in liquid nitrogen at a temperature of -196 ° C aims to maintain spermatozoa life by reducing metabolic activity to zero metabolic conditions (Djanuar, 1985). Furthermore, it is stated that if it is to be used for AI, it must go through a thawing process so that the results can be optimal. During the freezing process, the cow's sperm will experience an average of 50% death, so the dosage once AI must be increased 2 times compared to AI with fresh semen (Toelihere, 1985). The frozen semen process begins with cement storage using the Artificial Vagina (VB) method in general, then tests for macroscopic and microscopic quality, then calculates the concentration to determine the AI dose and the total number of spermatozoa/ml., Then dilution, glycerolization, equilAIration, filling sealing, pre-freezing and then frozen in liquid NITROGEN gradually (Hafez, 1985). The use of frozen semen in the field must go through a thawing process, which in principle is to gradually increase the temperature from -196°C to room temperature, which will then be AI in the cervix. Generally, thawing is carried out in ice water, tap water in a period of 15-35 seconds.

Characteristics of cow sperm

The volume of sperm in cows is influenced by the breed of the cow, age, and bodyweight associated with bulls' reproduction process. The average cow's sperm has a concentration of 1200 million cells/ml or 1.2 billion / ml of sperm with a range of 400 million to 2 billion

cells/ml. The mean sperm concentration of Brahman bulls was around 1.284 + 97.66. 109 cells/ml with a range of 1.283 - 2.087. 109 cells / ml, up to 1,700 + 333.84. 109 cells/ml. (Sumediana, *et al.*, 2007). Sperm volume is the number of milliliters of semen per ejaculate (Toelihere, 1985). The average volume of semen produced by Brahman bulls is around 2.38 - 5.74 ml with a range of 2.60 - 10.20 ml (Sumediana *et al.*, 2007). Meanwhile, Hafez (1985) made a range of semen volume between 5-8 ml/ejaculate.

Sperm Motility Sperm

Motility is a determinant of the feasAlility of sperm quality in terms of its fertilization ability. Motility after freezing at low temperatures indicates its quality in carrying out fertilization activity. Motility is used as a guide in assessing sperm quality (Nugroho, 2003). Motility of spermatozoa is used as an assessment of spermatozoa's ability to fertilize an egg, so that motility has an important role in the process of fertilizing an egg (Widiastuti, 2001).

The spermatozoa motility can be observed by dropping a drop of sperm on a glass object and then observing the individual movements under a microscope with a magnification of 400 times. Motility will be shown in the presence of a unidirectional movement, fast individual progressive movements appear. It is preferable to observe motility at 37 $^{\circ}$ C (Djanuar, 1985). Furthermore, it is stated that motility is influenced by ambient temperature, chemicals, urine, frequency of ejaculation, and first ejaculation.

One of the activities of spermatozoa is influenced by the temperature factor or the temperature of the environment. The normal spermatozoa activity occurs at 37°C and will increase twofold at a temperature of about 46 ° C, likewise at low temperatures, and their activity will decrease (Partodihardjo, 1992). This decrease in activity is the basic idea for spermatozoa storage both in the short and long term. Long-term spermatozoa storage decreases the temperature to -196°C using liquid nitrogen refrigerant, and this method has been the guide for long-term sperm storage activities. Long-term sperm storage constraints using liquid nitrogen are the processing technique and the large cost required, especially with the high cost of liquid nitrogen and the high processing costs. Not everyone can do it, especially farmers/groups.

The insemination equipment consists of a speculum made of glass pipe *pyrex* measuring 18 cm in length with a diameter of 2 cm, one insemination pipette made of 1 ml glass, and a scale. The insemination pipette is connected with a small rubber hose and then connected to a

syringe. As a lighting device, you can use a small spotlight, a headlight, or simply a flashlight, or if you are used to it without using a lamp, AI can easily do it. Insemination should be carried out on the second day of the estrous period between 12-18 hours after the first visAIle lust. The spermatozoa that we input will survive about 20 hours in the female genital tract.

Semen Dilution

The function of diluents is to provide nutrients as a source of energy for spermatozoa, protect spermatozoa from cold shock, provide buffer material (buffer), maintain isotonic conditions, prevent sperm growth and increase volume. Whereas the requirements for sperm diluents are cheap, simple, practical to make but have high preservation power, the diluent must contain elements that are almost the same physical and chemical properties as cement. It must not contain toxic substances (poison) or good in nature. For the life of spermatozoa and ovum (not inhAliting fertilization), it must remain isotonic, and the diluent must still ensure ease in testing the quality of semen (Feradis, 2010).

A good diluent must have isotonic osmotic pressure and be able to maintain it during storage, provide the mineral balance needed by spermatozoa, provide food for spermatozoa for their metabolic processes, have lipoproteins or lecithin to protect spermatozoa against cold shock, provide a buffer, are a source of reducing material to protect cellular enzymes containing sulfhydryl, free from germs. Diluents commonly used to dilute semen include diluent tris, lactose, and milk (Salisbury and Van Demark (1985).

Coconut water is produced in many tropical countries as a diluent for sperm, replacing milk as a diluent. Sources of food for spermatozoa are understandable, but it still needs to be studied/researched as a buffer. Coconut water can be added to egg yolk in the same ratio as in egg yolk-citrate diluent (Feradis, 2010). Apart from coconut water, there is also plenty of coconut juice, which contains sugar as a nutrition source for spermatozoa.

Egg yolks are useful for cooling sperm to close to 0C, and egg yolks will protect spermatozoa when the semen is diluted and during the process of freezing and thawing again (Salomon and Maxwell, 1995). Egg yolks contain lipoproteins and lecithin, which can coat the plasma membrane of cells to maintain da n protects the integrity of the sperm cell lipoprotein sheath and protects cold temperatures during the freezing process (Toelihere, 1985).

Sperm storage methods

In the development of national nurseries, the problem faced is how to increase the number of livestock breeds in good quantity and quality (Bahri, 2006). One of the activities of spermatozoa is influenced by the temperature factor or the temperature of the environment. The normal spermatozoa activity occurs at 37 $^{\circ}$ C and will increase twofold at a temperature of about 46 $^{\circ}$ C, likewise at low temperatures, and their activity will decrease (Partodihardjo, 1992). This decrease in activity is the basic idea for spermatozoa storage both in the short and long term. Long-term spermatozoa storage decreases the temperature to -196 $^{\circ}$ C using liquid nitrogen refrigerant, and this method has been the guide for long-term sperm storage activities. Long-term sperm storage constraints using liquid nitrogen are the processing technique and the large cost required, especially with the high cost of liquid nitrogen and the high processing costs. Not everyone can do it, especially farmers/groups.

Artificial Insemination Artificial

Insemination can use fresh cement, the cement that has been diluted with a suitable diluent, or cement that has been frozen. The advantages of using frozen semen include The possAlility of semen being stored for a long time, allows selective mating anywhere and at any time, prevents sexually transmitted diseases in female animals. The number of males required is minimized.

Cement for AI can be divided into two, namely frozen cement and liquid cement. The AI technique with frozen semen is relatively easy to do. The equipment needed is in the form of a speculum (in the shape of a duck's beak) to open the vagina, an Artificial Insemination (AI) Gun to "shoot" the cement into the cervix, and plastic sit to place the straw (frozen semen package). The problem faced by using frozen sheep semen for AI is liquid nitrogen availability in all corners of the country. This constraint is the background of the holding of this research activity, which aims to make it easier to obtain cement that can be used for AI throughout Indonesia using only diluents available in each region and using storage tools that are scattered throughout the country in the form of refrigerators (refrigerators) and easy. Implemented by every community.

The research roadmap includes determining the length of storage at 5oC as measured at 50% motility, which will then be used for AI in sheep. Whereas in the second year, all treatments will be AI in sheep based on the motility of 50% achieved at a certain time (hours) the results of the study year - 1 (first).

Furthermore, the research roadmap is as follows:

THE EFFECT OF A MIXTURE OF ICE AND KITCHEN SALT AS A PRESERVATIVE IN A FIELD QUALITY OF SPERMATOZOA FLASK ON THE FROZEN CEMENT THAWING

ĮĻ

"THE QUALITY OF POST THAWING SPERMATOZOA OF INDIGENOUS INDONESIA AND PHILIPINES CATTLE USING ICE CUBE AND SALT AS AN ALTERNATIVE OF LIQUID NITROGEN"

MATERIALS AND METHODS

Time and Place of Research

The research will be carried out from March to August 2021 at the BIB Lembang Bandung, West Java Province and at the Laboratory of Biotechnology and Reproduction, UMBY.

Materials and Methods

Materials and tools

The research used frozen cement straws in the form of mini straw from the Pasundan cattle breed, which was produced by the BIB Lembang Beef Cattle Livestock, West Java. The research used an experimental method with a completely randomized design with a unidirectional pattern, namely ice and salt ratio with 3 replications. A total of 60 mini frozen cement straws, while the tools used include ice flasks, water jacket tubes, thermometers, microscopes, glass objects, cover glass, heating tables, and stationery.

The research method used an experimental method with the basic completely randomized design with a unidirectional pattern, namely the ratio of ice cube vs. salt. The research will be repeated 3 times (straw).

How it Works : A total of 60 mini straws of frozen semen from Pasundan cattle were distributed in 4 flasks with a capacity of 750 ml made of stainless which were filled with nitrogen as T0 (control), T1: ice cubes + 20% salt, T2: ice cubes + 25% salt and T3: ice cubes + 30% salt. The straw is put into the water jacket in a large test tube then placed in the thermos standing up. Each flask contains 15 straws, which will be checked for motility (%) every 1 hour until the 5th hour of storage. Motility examination on the heating table using a microscope with a magnification of 10 x 40 times by looking at the spermatozoa object compared to spermatozoa that are not moving or moving but not progressive forward.

The schedule for the implementation activity

No	Description	Times (Month)						
	ofactivities	April	May	June	July	August	September	
1	administrative preparationand material tools and permits							
2	Procurement of research materials							
3	Research implementation							
4	Preparation of reports							
5	Seminar / publication							

This researchis planned for March to September 2020, with the following schedule. :

RESULTS AND DISCUSSION

1. Post Thawing Motility (%)

Motility is the movement of spermatozoa that can be used as a reference in assessing the quality of spermatozoa for artificial insemination (Bintara, 2011). The results of the complete examination of sperm motility of Pasundan cattle and BIB production in Lembang are presented in Table 1.

Treatment		Average			
-	0	2	4	6	_
TO	50.00 ±10.00	67.50 ± 2.50	58.33 ± 2.88	48.33 ± 2.88	$56.04 \pm 9.13^{\circ}$
T1	50.83 ± 10.10	30.00 ± 5.00	16.66 ± 2.88	11.66 ± 2.88	27.29 ± 16.63^{a}
T2	52.50 ± 2.50	30.00 ± 17.32	18.33 ± 2.88	13.33 ± 5.77	$28.54 \pm 17.66^{\mathrm{a}}$
T3	51.66 ± 9.46	40.83 ± 2.88	28.33 ± 5.20	24.16 ± 5.20	36.25 ± 12.40^{b}
Average	$51.25 \pm 7.42^{\circ}$	42.08 ±17.83 ^b	30.41 ± 17.73^{a}	24.37 ± 24.31^{a}	

Table 1. Spermatozoa motility of pasundan cattle (%).

Notes:* a,b,c Different superscripts in the same line show significant differences (P<0.05).

**(T0= nitrogen, T1= ice cube + 30% salt, T2= ice cube + 40% salt, T3= ice cube + 50% salt)

The average percentage of spermatozoa motility can be seen in Table 1. Based on these results, it shows that the media and storage time have a significant effect (P<0.05) on spermatozoa motility in T0 and T3 treatments, while T1 and T2 treatments are not significantly different (P>0,05). The use of storage media filled with liquid nitrogen had a higher motility rate (P<0.05) compared to a mixture of ice cubes and salt (T1, T2 and T3). This is because when the straw is stored with liquid dinitrogen, the metabolism of spermatozoa cells can be said to stop, the metabolism of spermatozoa cells will increase along with the increase in temperature. Storage of semen in media with temperatures ranging from $3-4^{\circ}$ C, metabolism is still running but

very slowly, because it is far below the physiological temperature (38°C). The longer the storage time, the more use of nutrients between spermatozoa as a result of ongoing metabolism, this causes the availability of nutrients to be depleted. A large number of spermatozoa will accelerate the use of nutrients for the purposes of spermatozoa metabolism, so that nutrients will be quickly depleted and the production of ATP (adenosine triphosphate) in the mitochondria will be inhibited so that it can affect the motility of spermatozoa (Hayati, 2011).

The results of the research on the motility of the sperm of Pasundan cattle stored in a thermos with a storage medium of a mixture of salt and ice cubes showed that the best average motility that entered the SNI standard (Indonesian National Standard) was 40.83% in the T3 treatment (ice cubes + 50% salt) for a long time. two hours of storage, while the other motility averages were still below the SNI standard or their motility was below 40% except at zero hours of storage. This is because treatment using a mixture of salt and ice cubes causes cold shock. Changes in temperature that occurred, namely from -196OC (liquid nitrogen temperature) to the temperature of ice cubes and salt treatment in the thermos, namely \pm -15OC, made most of the spermatoza die and their motility decreased. According to Sonjaya et al., (2005) stated that the biggest factors that affect the decrease in sperm quality due to cold shock are temperature and pH.

Garner and Hafez (2000) stated that the motility of bovine spermatozoa ranged from 40-75%. Differences in spermatozoa motility can be caused by age in cattle, 1.5 years old has lower motility than 2 years old, this is because in 2 year old cows the primary and secondary reproductive organs are optimal (Azzahra et al., 2016). Meanwhile, according to Herdis (2005) states that the motility of spermatozoa is influenced by differences in the breed of livestock and the time of examination. Another factor that can affect motility is feed (Zulfan, 2008).

2. Viability (%)

The results of the examination of spermatozoa viability of Pasundan cattle and BIB production in Lembang are presented in full in Table 3.

Treatment	•	Average			
	0	2	4	6	
TO	79.33 ± 2.56^{h}	$74.05 \pm \ 6.05^{gh}$	$71.24 \pm 12.78^{\text{gh}}$	$67.36 \pm 10.31^{\text{gh}}$	72.99 ± 8.81^{e}
T1	$72.16\pm\ 5.48^{gh}$	$58.05 \pm \ 20.56^{gh}$	52.42 ± 24.01^{g}	$26.35 \pm 12.72^{\rm f}$	52.24 ± 22.73^{d}
T2	$71.50 \pm \ 2.17^{gh}$	$67.66 \pm \ 8.31^{gh}$	$20.17 \pm \ 11.82^{f}$	$20.17 \pm \ 11.82^{\rm f}$	47.64 ± 25.42^{d}
Т3	$58.67 \pm \ 4.73^{gh}$	$65.07 \pm \ 11.14^{gh}$	$29.83 \pm \ 6.11^{\rm f}$	$19.91 \pm \ 9.25^{f}$	43.37 ± 21.01^{d}
Average	70.41 ± 8.48^{c}	$66.21 \pm 12.43^{\circ}$	$46.18 \pm \mathbf{22.81^{b}}$	$33.44 \pm \mathbf{22.69^a}$	

Table 3. Viability (%)

Notes:* a,b,c Different superscripts in the same line show significant differences (P<0.05).

**(T0= nitrogen, T1= ice cube + 30% salt, T2= ice cube + 40% salt, T3= ice cube + 50% salt)

*** a,b,c Different superscripts in the same column show significant differences (P<0.05)

^{d,e} Different superscripts on the same line show significant differences (P<0.05)

^{f,g,h} Different superscripts in the same column and line show significant differences (P<0.05)

The average percentage of live spermatozoa from the results of the study can be seen in Table 3. Based on these results, it shows that the media and storage time have a significant effect (P<0.05) on live spermatozoa. The use of liquid nitrogen (T0) was higher (P<0.05) compared to a mixture of ice cubes and salt (T1, T2 and T3). However, the use of ice cubes and salt at all levels (T1, T2 and T3) showed no significant difference (P<0.05). Viability of spermatozoa decreased by 29.62%. This percentage decrease occurred when using ice cubes and salt media (T1, T2 and T3). The percentage of spermatoza viability decreased due to damage to the plasma membrane and acrosome membrane due to the influence of cold shock. The temperature of the frozen cement storage media used in this study was different, namely M0 (-196 0C). This is in

accordance with Septiani et al. (2017) that the metabolic rate and motility of spermatozoa will decrease at a temperature of 3-5 0C. Viability is the vitality of spermatozoa as an indicator of spermatozoa quality. The viability of diluted frozen semen has at least 60%-75% live spermatozoa (Garner and Hafez, 2000).

The storage time of 0 and 2 hours was higher (P<0.05) than 4 and 6 hours. However, the storage time of 4 hours tended to be better (P<0.05) than 6 hours. Based on the results of the study, the length of storage time decreased the viability of spermatozoa by 36.70%. The longer the storage time, the decrease in viability is also high. Spermatozoa quality is said to be good if it has a high number of live spermatozoa and <15% dead spermatozoa (Bintara, 2011).

The results of the analysis of variance showed that there was a significant interaction between the media and storage time (P<0.05). This shows that the media and the length of storage time affect each other's viability. The use of M0 with a shelf-life of 0 hours showed the highest viability compared to other treatments and T3 with the lowest curing time of 6 hours (P<0.05). The use of T1 with a storage time of 2 hours tends to be better than T2 and T3 although it is not significant.

Likewise with the long storage time of 6 hours. The percentage of viable spermatozoa is determined by the intact plasma membrane. The plasma membrane functions to protect spermatozoa organelles and transport electrolytes for spermatozoa metabolism. Damaged plasma membrane can affect the physiological function and metabolism of spermatozoa, causing spermatozoa to die. Intact plasma membrane has a correlation with spermatozoa motility, the more intact spermatozoa plasma membrane, high motile spermatozoa (Azzahra et al., 2016). In this study, the decrease in viability occurred because the spermatozoa experienced cell damage, namely changing the structure of the plasma membrane phospholipids and disrupting the

permeability function of the cell membrane. If there is damage to the membrane, the metabolic process will be disrupted, the synthesis of Adenosine Tri Phosphate (ATP) does not work well and results in a decrease in the viability of spermatozoa.

3. Wave Motion

Spermatozoa mass movement is the active movement of spermatozoa by showing undulating and massive mass movements. The mass movement scores consist of very good (3/+++), good (2/++), moderate (1/+), and bad (-) (Tambing et al., 2001). The results of the examination of the mass movement of the spermatozoa of Pasundan cattle and BIB production in Lembang are presented in Table 2.

Treatment		Average			
-	0	2	4	6	
TO	$2.00\pm\ 0.00$	$2.16\pm\ 0.28$	1.83 ± 0.28	1.83 ± 0.28	$1.95\pm0.25^{\mathrm{b}}$
T1	$2.00\pm\ 0.00$	1.16 ± 0.28	1.00 ± 0.00	1.16 ± 0.28	1.33 ± 0.44^{a}
T2	2.33 ± 0.28	1.33 ± 0.28	1.16 ± 0.28	1.33 ± 0.28	$1.54\pm0.54^{\rm a}$
Т3	2.00 ± 0.50	1.66 ± 0.57	1.33 ± 0.28	1.16 ± 0.28	$1.54 \pm 0.49^{\rm a}$
Average	$\textbf{2.08} \pm \textbf{0.28}^{b}$	$1.58 \pm 0.51^{\rm a}$	$1.33\pm0.38^{\rm a}$	$1.37\pm0.37^{\rm a}$	

Table 2. Mass motion of Pasundan cattle spermatozoa.

Notes:* a,b,c Different superscripts in the same line show significant differences (P<0.05). **(T0= nitrogen, T1= ice cube + 30% salt, T2= ice cube + 40% salt, T3= ice cube + 50% salt)

The results showed that the average mass movement of spermatozoa ranged between good and sufficient categories, this could occur because treatment using salt and ice caused cold shock. Extreme temperature changes that occur, namely from a temperature of -196 0 C (liquid nitrogen temperature) to the temperature of the ice cube and salt treatment in the thermos, which

is \pm -15 ⁰C, make most of the spermatoza dead. The biggest exogenous factors that affect the decrease in sperm quality due to cold shock are temperature and pH (Sonjaya et al., 2005).

Cold shock that occurs due to changes in extreme temperatures and storage time in the treatment causes the metabolism of spermatozoa to run very quickly, causing the energy for locomotion to decrease and ultimately causing the spermatozoa to die. Spermatozoa will use energy for locomotion produced by accessory glands (Azzahra et al., 2016). Accessory glands will secrete plasma semen by producing several kinds of nutrients such as glucose, fructose, sucrose, citric acid, protein, potassium, sorbitol, insitol and glycerylphosphoryl-choline (GPC) which function as energy substrates for spermatozoa including sperm motility (Sujoko, 2009).

Cold shock that occurs also increases the production of lactic acid in the sperm to be high as a result of the rapid metabolic process. The high content of lactic acid in sperm will result in increased damage to the membrane that affects metabolism and the energy produced. The high amount of lactic acid will affect the increase in the osmotic pressure of the semen plasma thereby reducing the permeability of the spermatozoa membrane and increasing membrane damage. Damage to the spermatozoa membrane will affect the metabolic process and decrease the formation of energy. The reduced energy will greatly affect the activity and mobility of spermatozoa (Samsudewa et al., 2006). This is what causes the large number of dead spermatozoa. It can be concluded that the storage of spermatozoa in a thermos with salt and ice treatment was not able to maintain the mass movement of spermatozoa significantly.

REFERENCE

- Arifin ,J., Dudung Mulliadi, 2014. Potensi Sapi Rancah di Jawa Barat. Dinas Peternakan Provinsi Jawa Barat. Bandung
- Arifin, J, Sri Bandiati K, Endang Y. S, Unang Y, Asep A, Indrijani, Sulasmi. 2015. Sebaran Gen, Keseimbangan Populasi dan Ukuran Populasi Efektif Sapi Pasundan Pasca Migrasi di Majalengka. Jurnal Ilmu Ternak, Vol 15, No 2
- Azzahra, F.Y., E.T. Setiatin dan D. Samsudewa. 2016. Evaluation of Sperm Motility and Viability of Fresh Semen of Kebumen PO Bulls. Jurnal Sain Peternakan Indonesia Vol. 11 No. 2.
- Bahri, S., 2006. Kebijaksanaan Perbibitan Nasional Kaitannya dengan Pemanfaatan Plasma Nutfah Ternak. Direktur Perbibitan Dirjennak. Pertemuan Nasional Pelestarian dan Pengembangan Plasma Nutfah Indonesia, Fapet UGM, Agustus 2006.
- Bintara, S. 2011. Rasio X:Y dan Kualitas Sperma pada Kambing Kacang dan Peranakan Ettawa. Fakultas Peternakan Universitas Gadjah Madda. Yogyakarta. *Jurnal Sains Peternakaan*, 9(2):65-71.
- Dinas Peternakan Provinsi Jawa Barat. 2014. Program Pengelolaan SDGT Lokal Berkelanjutan di Jawa Barat. Bandung. Jawa Barat
- Djanuar, R., Haryati, Rachmawati, T R Tagama., 1988. Dasar-Dasar IB pada ternak sapi. Lab-Fisrep, Unsoed. Purwokero.
- Feradis., 2010. Bioteknologi Reproduksi pada Ternak. Penerbit Alfabeta, Bandung.
- Garner D.L. and E.S.E. Hafez. 2000. Spermatozoa and Seminal Plasma. In: E. S. E.Hafez (Ed.). Reproduction in Farm Animal. 7th. ed. Lippomcott Wiliams and wilkins. Philadelphia. 96-106.
- Hafez, ESE., 1987. Reproduction in Farm Animal, 4 th ed. Lea and Febiger, Philadelphia.
- Hayati A, 2011. *Spermatologi*. Surabaya : Pusat Penerbit dan Percetakan Universitas Airlangga. Surabaya.
- Hilmia N. 2013. Karakterisasi Fenotipe dan Potensi Genetika Serta Gubungannya dengan Produktivitas dan Kualitas Daging Sapi Lokal Ciamis Jawa Barat. *Tesis*. Bogor. Institut Pertanian Bogor.
- Menteri Pertanian RI. 2014. Surat Keputusan Menteri Pertanian Nomor 1051/Kpts/SR.120/10/2014 tentang Penetapan Rumpun Sapi Pasundan Jawa Barat. Kementan RI. Jakarta
- Naufal ,F, Endang Yuni Setiawati dan Nono Suwarno, 2016. "Karakteristik Kualitatif Sapi Pasundan di Peternakan Rakyat" (<u>http://Jurnal.unpad.Ac.id/ejurnal/article/download/10135/456</u>) Acces date : 6 Oktober 2017.

Partodihardjo, S., 1992. Ilmu Reproduksi Hewan. Penerbit Mutiara, Bandung.

- Pikiran Rakyat. 2017. "Mulai Punah Sdapi Pasundan harus di konservasi" selengkapnya tersaji pada link berikut ini; (<u>http://www.pikiran-rakyat.com/ekonomi/2017/08/21/mulai-punah-Sapi-Pasundan-harus-dikonservasi-407833</u>) diakses pada 28 Januari 2021.
- Salisbury, G.W. dan N. L. VanD emark. 1985. *Fisiologi Reproduksi dan Inseminasi Buatan pada Sapi*. Gadjah Mada University Press. Yogyakarta.
- Samsudewa, D. dan E. Purbowati. 2006. Ukuran organ reproduksi domba lokal jantan pada umur yang berbeda. Dalam: *Seminar Nasional Teknologi Peternakan dan Veteriner*. 413-418.
- Septiani, D., E. M. Effendi, Moerfiah. 2017. Penyimpanan spermatozoa pada suhu [reservasi dan berbagai pengencer semen terhadap daya tahan hidup spermatozoa. Ekologia, 17 (2): 18-23.
- Sonjaya. H, Sutomo dan Hastuti. 2005. Pengaruh Penambahan Calcium IonopHore Terhadap Kualitas Spermatozoa Kambing Boer Hasil Seksing. J. Sains & Teknologi 5 (2).
- Sujoko, H, M. H. A. Setiadi dan A. Boediono. 2009. Seleksi spermatozoa domba garut dengan metode sentrifugasi gradient densitas percoll. Jurnal Veteriner. 10 (3): 125-132.
- Tambing, S.N, M. Gazali. dan B. Purwantara. 2001. Pemberdayaan Teknologi Inseminasi Buatan pada Ternak Kambing. Wartazoa Vol. 11, No.1.
- Toelihere, M.R.1985. Inseminasi Buatan pada Ternak. Angkasa. Bandung.
- Utomo, S. dan N. Rasminati, 2012. Aplikasi Teknologi Terapan Inseminasi Buatan (IB) pada Kambing Peranakan Etawa (PE) di Wilayah Pantai. *Prosiding Seminar Nasional* Optimalisasi Penelitian dan Pengabdian dalam Membangun Insan Berkarakter. LPPM Universitas Negeri Yogyakarta. Hal 755-764
- Utomo, S. dan N. Rasminati, 2013. Pengaruh Perbedaan Ketinggian tempat terhadap Capaian Hasil Inseminasi Buatan pada Sapi. *Jurnal Sain Peternakan*, Prodi Peternakan UNS. Vol 11, No 1, Maret 2013. Hal : 34-42
- Utomo, S., 2004. Capaian tingkat reproduksi Sapi dan domba lokal di tingkat petani di kabupaten Bantul, *Penelitian mandiri*. Prodi Peternakan, Fakultas Agroindustri. Universitas Mercu Buana Yogyakarta.

APPENDICES

Appendix 1. Support for research support facilities and infrastructure

Supporting facilities and infrastructure for research at the UMBY campus and at the CAPZU are sufficient, however, for some sample testing and preparation of research materials, the partners will collaborate with the partners while the partners are labs. Reproductive Physiology, Faculty of Animal Science UGM, BPBPTDK Yogyakarta Yogyakarta and UPTD of Ciamis Beef Cattle Breeding Development Center, West Java.

Appendix 2. Organizational structure of the research team and task development

No	Name	Position	Field of expertise	Agency of origin	Time allocation	Job Description
1	Ir. Ajat Sudrajat, S.Pt., M.Pt., IPP.	Head	Animal Technology	UMBY	20 hours / week	Carry out coordination and as the person in charge of research
2	Nurul Hidayat, S.Pt., M.Sc.	Secretary	Animal Technology	UMBY	20 hours / week	Carrying out administrative and documentation tasks as well as making reports and coordinating with the chairman and the research team
3	Ir. Nur Rasminati, MP.	Treasurer	Animal Production	UMBY	20 hours / week	Carry out financial treasury, record income and expenditure of funds and reporting
4	Ir. Setyo Utomo, MP.	Member	Animal Reproduction	UMBY	20 hours / week	Assisting the implementation of the research process
5	Dr. Maryneth B. Barrios	Member	Animal Reproduction	UMBY	20 hours / week	Assisting the implementation of the research process

6	Salvacion J. Legaspi	Member	Animal Reproduction	UMBY	20 hours / week	Assisting the implementation of the research process

ATTACHMENT

Attachment 4. Biodata of the chairman and members of the proposing team Chief Researcher

A. Personal Identity

1.	Full name (with title)	Ir. Ajat Sudrajat, S.Pt., M.Pt., IPP.
2.	Gender	Male
3.	Functional Position of	Teaching Staff
4.	NIP / NIK / Other Identity	201739
5.	NIDN	0512059501
6.	Place and Date of Birth of	Ciamis, May 12, 1995
7.	E-mail	sudrajatajat135@mail.ugm.ac. en
		ajat@mercubuana-yogya.ac.id
		sudrajatajat135@gmail.com
8.	Telephone	082240054084
	Number / HP	
9.	Office Address	Animal Husbandry Study Program, Faculty of Agroindustry, University
	of	of Mercu Buana Yogyakarta Jl. Wates Km. 10 Yogyakarta 55753
10.	Telephone / Fax Number	(0274) 6498211, 6494212 / (0274) 6498213
11.	E-mail	mercubuana-yogya.ac.id
12.	Graduates who	S-1 = people; S-2 = people; S-3 = people
	have earned	
13.	Subjects taught	1. Dairy Production Animal Husbandry
	in	2. Management Integrated Agricultural Field Lecture,
		3. Practicum Counseling and Communication Animal
		4. Practicum Reproduction
		5. Inseminator
		6. Practicum Practicum Poultry Production Management Poultry
		7. Practicum Production Science

B. Education History

	S1	S2	Profession
Name College	Mercu Buana	Jenderal Soedirman	Gadjah Mada University

	University of	University	(UGM)	
	Yogyakarta	(UNSOED)	Yogyakarta	
	(UMBY)	Purwokerto		
Field of	Animal Science	Animal Science	Animal Industry Engineer	
Graduation	2013-2017	2017-2019	2019-2020	
Year				
Thesis Title /	Effect of	Factors Affecting the	Productivity of Etawah	
Final Project /	Supplementation	Production and	Crossbreed Goat (PE) in	
Thesis /	Turmeric and Cinnamon	Quality of Cow Milk	Kaligesing Animal Park	
Dissertation	Spices on the	Holstein Friesian in	Integrated Livestock	
	Development of Male	KPBS Pangalengan	Breeding and Breeding	
	Quail Reproductive	Kab. Bandung	Center, Central Java	
	Organs		Province Livestock and	
			Animal Health Service.	
Name of	1. Ir. FX. Suwarta, MP.	1. Prof. Ir. Dadang	1. Prof. Ir. I Gede	
Supervisor /	2. drh. Anastasia	Mulyadi Saleh, MS.,	Suparta Budisatria,	
Promoter	Mamilisti Susiati,	M.Agr. Sc.,Ph.D.	M.Sc., Ph.D., IPU.,	
	MP.	2. Dr.Ir. Efka Aris	ASEAN Eng.	
		Rimbawanto, MP.	2. Dr. Ir. Sigit Bintara,	
		3. Dr.Agr., Ir. Yusuf	M.Sc., IPM., ASEAN	
		Subagyo, MP.	Eng.	

C. Work History

No	Work Unit	Starting from to	Position
1.	Department of Agriculture Kab. Purworejo (UPSUS SIWAB KEMENTAN-UGM Program)	April sd. August 2017	Field extension assistant (PPL)
2.	Fac. Agroindustry	2017 - 2020	Staff. Education
3.	Fac. Agroindustry	2020 - Present	Lecturer

D. Research Experience in the Last 4 Years

			Funding	
No.	Year	Title Research	Source *	Qty
				(million
				Rp)
1.	2017	Effect of Turmeric and Cinnamon Spices	DIKTI	60
		Supplementation on the Development of Male		
		Quail Reproductive Organs.		
2.	2019	Factors Affecting the Production and Quality	KPBS	3.5

		ofCow Milk Holstein Friesian at KPBS	Pangalengan	
		Pangalengan Kab. Bandung.	Bandung	
3.	2020	The Effect of a Mixture of Ice and Kitchen Salt as a	UMBY	8
		Preservative		
		in a FieldQuality ofSpermatozoa		
		Flask on theFrozen Cement Thawing.		
4.	2020	Parent RamProductivity Peranakan Etawah (PE) in	Mandiri and	3
		Taman Kaligesing Livestock and Livestock	Wildlife	
		Breeding Center for Integrated Aquaculture	Livestock	
		Department of Animal Husbandry and Animal	Kaligesing	
		Health of Central Java province		
5.	2020	hazard identification, risk and accident prevention	and Kaligesing	3
		Work (Case Study at Kaligesing Animal Park,	Animal Park	
		Center for Integrated Livestock Cultivation and		
		Breeding, Central Java Province Livestock and		
		Animal Health Service		

E. Experience of Community Service in the Last 4 Years

No	Voor	Title Community Services	Funding		
110.	I Cal	The Community Services	Source *	Quantity (million	
				US \$)	
1.	2020	Revenue Improvement Society Through	UMBY AND	5.5	
		Farming	SELF		
		Livestock Goat and Sheep in Hamlet			
		Dampit I and II Dampit			
		District Windusari, Magelang			

F. Publication of scientific articles in the journal in 4 years Last

No.	Title of Scientific Article	Name of Journal	Volume /
			Number / Year
1.	Factors Affecting Production and Quality of Cow	Journal of Animal	Submited 2019
	Milk Holstein Friesian at KPBS Pangalengan	Production	
	Bandung District.		

G. Speakers of Scientific Seminar (Oral Presentation) in the Last 4 Years

No.	Name of	Title of Scientific Article	Time and Place
	Scientific		
	Meeting /		
	Seminar		
1.	Seminar on	Effect of Turmeric and Cinnamon Supplementation	(3 February 2017)

	Research	on the Development of Male Quail Reproductive	Fac. UMBY
	Results The	Organs.	Agroindustry
2.	Seminar on	Factors Affecting Production and Quality of Cow	(August 2019)
	Research	Milk Holstein Friesian at KPBS Pangalengan	Faculty of Animal
	Result	Bandung District.	Science UNSOED
3	Seminar on	Productivity of Etawah Crossbreed Goats (PE) at	(18 December
	the Results of	Kaligesing Animal Park, Center for Integrated	2020) Faculty of
	Research on	Livestock Cultivation and Breeding, Central Java	Animal Science
		Province Animal Husbandry and Animal Health	UGM
		ServiceScience	
4	Seminar on	Identification Potential Hazards, Risks and	(18 December
	Research	Prevention of Occupational Accidents (Case Study	2020) Faculty of
	Results	at Kaligesing Animal Park, Integrated Livestock	Animal Science
		Breeding and Breeding Center, Central Java	UGM
		Province Animal Husbandry and Animal Health	
		Service) of Animal Science	

H. Book Works in the Last 4 Years

No	Title ofBook	Year	Number of	Publisher
			Pages	
1.	Occupational Health and Safety and	2020	180	UGM PRESS (On
	Environment (K3L) Book for Animal Husbandry			Process)
2.				

I. IPR Acquisition in the Last 4 Years

No	Title / Theme IPR	Year	Type	P / ID Number
1.				
2.				

J. Experience Formulating Public Policy / Other Social Engineering in the Last 7 Years

No.	Title / Theme / Other Types of Social Engineering That Have Been Implemented	Year	Place of Application for	Community Response
1.				
2.				

K. Award in the last 4 years (from government, association or other institution)

No.	Type of Award	Institution Awarding	Year	No.
1.	Outstanding Graduates of	UNSOED	2019	B / 001 / UN.23.09 / PP.06.01 / 2019
2.	1st place inLearning Vidio	UMBY	2020	1/01 / B. ACADEMIK /

	Competition			UMBY / XI / 2020
3.	Best Graduates of the Second Period	UGM	2021	243 / J01.1.25 / PASCA /
	Engineering Professional Program			2021

All data that I have entered and included in this biodata are true and can be accounted for legally. If in the future there is a disagreement with reality, I can accept sanctions.

Yogyakarta, 26 January 2021 Composers,

Ir. Ajat Sudrajat, S.Pt., M.Pt., IPP.

Biodata of Members (1)

A. Personal Identity

1.	Full name (with	Ir. Nur Rasminati, MP
	title)	
2.	Gender	M /F
3.	Functional	Head Lector
	Position of	
4.	NIP / NIK /	900087
	Other Identity	
5.	NIDN	0506036401
6.	Place and Date	Magelang, March 6, 1964
	of Birth	
7.	E-mail	rasminati @ mercubuana- yogya.ac.id nurrasminati@yahoo.co.id
8.	Phone Number /	085878578282/081804120389
	HP	
9.	Office Address	Animal Husbandry Study Program, Faculty of Agroindustry, University
	for	of Mercu Buana Yogyakarta Jl. Wates Km. 10 Yogyakarta 55753
10.	Telephone / Fax	(0274) 6498211, 6494212 / (0274) 6498213
	Number	
11.	E-mails	-
12.	Graduates who	$S-1 = 158$ people; $S-2 = \dots$ people; $S-3 = \dots$ people
	have earned	
13.	Subjects	8. inCattle Production Science
	taughtBeef	8. ManagementCattle
		8. of BeefFeedlot Technology
		8. Comprehensive Project of Animal Husbandry Industry
		8. Introduction to Animal Science
		8. FieldI
		8. StudyField Study II

B. Education Background

	S1	S2	S 3
Name of College	University of Diponegoro Semarang	Gadjah Mada University Yogyakarta	
FieldScience	Animal	Animal Science	
Sign-Pass Year	1982-1987	1997-1999	
Title Thesis /	digestibility in Vitro Imperata	performance of Local Sheep	
Thesis /	(Imperata cylindrica (L. Beauv) in	Males In the Feeding of Rice	
Dissertation	Various Age treatment Cutting with	Leaf Shoots and Elephant	
	H_2SO_4	Grass.	
Name of	3. Ir. Widiyanto, SU.	1. Dr. Ir. Nono Ngadiyono,	
Supervisor /	3. Ir. Sunarso, MS.	MS.	
Promoter		2. Dr. Ir. Kustono, M.Sc.	

C. Job History

No	Work Unit	Starting from year to	Position
		•••	
1.	Agriculture Faculty	1995 - 1997	Secretary of Animal Husbandry Department
2.	Agriculture Faculty	2000 - 2004	Secretary of Animal Husbandry Department
3.	Agriculture Faculty	2004 - 2006	Head of Animal Production Lab
4.	LPPM & Bureau UPT	5 April 2008 - 2012	Head of Library
5.	Fac. Agroindustry	2012 - 2016	Head of Animal Husbandry Study Program
6.	Fac. Agroindustry	2016 - 2020	Head of Animal HusbandryProgram

D. Study Research Experience in the Last 5 Years

			Fundi	ng
No.	Year	Title Research	Source *	Oty
				(million
				Rp)
1.	2015	Performance Evaluation and Development Potential of	UMB Yogya	1.25
		Local Sheep in Kaliangkrik District of		
2.	2016	Growth of Sheep Given Fermented Feed with Starters	UMB Yogya	1.5
		and Local Nutrients Source of		
3.	2016	Quality Sheep Genetics and Reproductive	Mandiri	4,725
		performance of Local Owned Poor Households		
		(RTM) in Pakis subdistrict, Magelang		
4.	2017	Beef CattleIntegrated Development in Poor Rural	UMB Yogya	4
		Areas Pakis subdistrict		
5.	2018	Effect of temperature Packaging Aluminum Foil and	PTUPT Th. I	50
		Save Local Sheep Cement on Sperm Quality and	DIKTI	
		Pregnancy Rate	TA. 2018	
	2010			150
6.	2019	Effect of Aluminum Foil Packaging and Storage	of PTUPT	158
		Temperature of Local Sheep Cement on Sperm	Th. II DIKTI	
		Quality and Pregnancy Rate	TA. 2019	
1				

E. Experience of Community Service in the Last 5 Years

No.	Year	Title of Community Service	Funding	g
			Source *	Qty

				(million
1.	2015	IbW Pakis District for Poverty Alleviation	Program IbW TH. I DP2M Dikti TA, 2015	<u> </u>
2.	2016	IbW Pakis District for Poverty Alleviation	Program IbW TH. II DP2M Dikti TA. 2016	100
3.	2016	IbM Banyusidi Village IbM	DP2M Dikti Program TA. 2016	36
4.	2017	IbM Desa Ketundan IbM	DP2M Dikti Program TA. 2017	43.5
5.	2017	IbW Pakis District for Poverty Alleviation	IbW TH Program. III DP2M Dikti TA. 2017	100
6.	2018	Application of Feed Technology to Increase the Productivity of Sheep for the Community of Ngemplak and Sreyal Hamlets, Ngemplak Village, Kec. Windusari, Magelang	UMBY Fund	5
7.	2019	PPM Tempak Village Through the Application of <i>Technofeeding</i> Goatfor Poverty Alleviation	UMBY Fund	9,125

F. Publication of Scientific Articles in Journals in the Last 5 Years

No.	Title of Scientific	Name of Journal	Volume /
	Article		Number / Year
1.	Effect of complete	Proceedings of the national seminar: Development	ISBN: 978-602-
	feed made from	of Animal Husbandry Based on Local Resources to	1004-09-8
	local raw materials	Face the ASEAN Economic Community.	p. 83: 88
	on the growth of	Fak. UNSOED Animal Husbandry, Purwokerto	September,
	sheep.		2015
2.	Productivity of	Proceedings of the national seminar: Development	ISBN: 978-602-
	beef cattle on the	of Animal Husbandry Based on Local Resources to	1004-09-8
	slopes of Merapi,	Face the ASEAN Economic Community.	p. 359: 365
	Dukun District,	Fak. UNSOED Animal Husbandry, Purwokerto	September,
	Magelang.		2015
3.	Performance	Proceedings of the National Seminar on Animal	ISBN: 978-602-
	Evaluation and	Husbandry II. Master Program in Animal Science,	72086-2-9
	Development	Fac. Animal Husbandry and Agriculture, UNDIP,	Page: 663-670,
	Potential of Local	Semarang, 12 May 2016	12 May 2016
	Sheep in Kec.		

	Kaliangkrik		
4.	Potential of Sheep Development in Gunungkidul Regency, Yogyakarta	Proceedings of the National Seminar on Animal Resurrection II. Master Program in Animal Science, Fac. Animal Husbandry and Agriculture, UNDIP, Semarang, 12 May 2016	ISBN: 978-602- 72086-2-9 Page: 671-679, 12 May 2016
5.	Potential of Goat Development in Gunungkidul Regency, Yogyakarta	Proceedings of the National Seminar on Animal Resurrection II. Master Program in Animal Science, Fac. Animal Husbandry and Agriculture, UNDIP, Semarang, 12 May 2016	ISBN: 978-602- 72086-2-9 Page: 792-801, 12 May 2016
6.	Science and Technology for Banyusidi Village Communities for Poverty Alleviation through Kampung Chicken Agribusiness,	Abdimas Journal Institute for Research and Community Service (LP2M) Semarang State University	[p-ISSN: 1410- 2765 e-ISSN 2503-1252] Vol 20, No 2 (2016) December, 2016 pp. 113 - 118
7.	Poverty Alleviation through the Village Chickens Babonization System in the IbW Program, Pakis Magelang District.	Journal of INOTEK Univ. Negeri Yogyakarta	Vol 21 No.2, August 2017 ISSN: 1411- 3554 Page: 96-100
8.	Evaluation of Performance and Potential Development of Local Sheep in Kaliangkrik District	Journal of Agricultural Science and Technology A http://www.davidpublisher.com	Vol. 7, No. 7, July 2017 (Serial Number 65) ISSN 2161- 6256 DOI: 10.17265 / 2161-6256 / 2017.07.006 pp. 501-506
9.	The Development Potential of Goat for Poverty Reduction in Windusari Subdistrict, Magelang Regency	Food Science Conference 2018, LPPM UMBY https://iopscience.iop.org/article/10.1088/1755- 1315/379/1/012009	IOP Conference Series: Earth and Environmental Science 379 (1) 012009

10.	Application of Sheep Technobreeding and Technofeeding for the Community of Ngemplak Village, District, Magelang	Book Chapter National Seminar: Working for the Country: Implementing Technology for Community Empowerment Towards a Society Era 5.0. The 2019	MBridge Press ISBN: 978-623- 7587-34-7 p. 123-134Male
11.	The Influence of LocalSheep and Different Packaging on 5°C Storage on Sperm Motility	Book Chapter National Seminar: Working for the Country: Technology Implementation for Community Empowerment Towards a Society Era 5.0. The 2019	MBridge Press ISBN: 978-623- 7587-34-7 p. 257-270
12.	Integrated Beef Cattle Development in Poor Village Areas, Pakis District	Book Chapter National Seminar: Working for the Country: Implementing Technology for Community Empowerment Towards a Society Era 5.0. The 2019	MBridge Press ISBN: 978-623- 7587-34-7 p. 271-288
13.	Increasing Goat Productivity Through Feed Technology in the PKH Group of Tempak Village, Candimulyo, Magelang	Dharma Bakti Journal - LPPM IST Akprind Yogyakarta. https://ejournal.akprind.ac.id/index.php/dharma	LPPM IST Akprind ISSN: 2614- 2929. Vol. 3 No 1, April 2020 p. 1-8
14.	Application of <i>Technobreeding</i> Goat Livestockfor the People of Tempak Village, Candimulyo, Magelang	Dharma Bakti Journal - LPPM IST Akprind Yogyakarta. https://ejournal.akprind.ac.id/index.php/dharma	LPPM IST Akprind ISSN: 2614- 2929. Vol. 3 No 1, April 2020 p. 9-16

G. Presenter Scientific Seminar (Oral Presentation) in the Last 5 Years

No.	Name of Scientific Meeting /	Title of Scientific	Time and Place
	Seminar	Article	
1.	Presentation at the National	The Effect of	Fapet. UNSOED Purwokerto,
	Seminar on Local Resource-	Complete Feed With	

2.	Based Animal Husbandry Development to Face the ASEAN Economic Community (MEA) Presenter at the National	Local Raw Materials onSheep Growth Productivity of beef	30 - 31 May 2015 Fapet. UNSOED Purwokerto,
	Seminar on Local Resource Based Animal Husbandry to Face the ASEAN Economic Community (MEA)	cattle on the slopes of Merapi, Dukun District, Magelang	30 - 31 May 2015
3.	Presenters at the National Seminar on Awakening of Animal Husbandry II	Performance Evaluation and Potential Development of Local Sheep in Kec. Kaliangkrik	Master of Animal Science Study Program, Faculty of Animal Science. Animal Husbandry and Agriculture, UNDIP, Semarang, 12 May 2016
4.	Presenter at the National Seminar on the Awakening of Animal Husbandry II the	Potential of Sheep Development in Gunungkidul Regency, Yogyakarta	Study Program of Master of Animal Science, Fac. Animal Husbandry and Agriculture, UNDIP, Semarang, 12 May 2016
5.	Presenter at the National Seminar on the Awakening of Animal Husbandry II of the	Potential of Goat Development in Gunungkidul Regency, Yogyakarta	Master of Animal Science Study Program, Fac. Animal Husbandry and Agriculture, UNDIP, Semarang, 12 May 2016
6.	Presenters at the National Seminar: Working for the Country: Implementing Technology for Community Empowerment Towards a Society Era 5.0. In 2019,	Integrated Beef Cattle Development in Poor Village Areas, PakisDistrict,	FikomUMBY 31 October 2019

H. Book works in the last 5 years

No	Title ofBook	Year	Number of Pages	Publishers
1.	Animal Reproduction Biotechnology	2018	181	Mbridge Press
2.	Introduction to Animal Science	2018	156	Mbridge Press Acquired

I. IPR in the last 5–10 years

No	Title / Theme of IPR	Year	Туре	P / ID Number
1.	Animal Reproduction Biotechnology	2018	Textbook	000129849
2.	Introduction to Animal Science	2018	Textbook	000132328
3.	Evaluation of Performance and Potential	2019	Copyright	000159604Materials

	Development of Local Sheep in Kaliangkrik District.			on
4.	Effect of Complete Feed With Local RawSheep Growth.	2019	Copyright	000159603

J. Experience Formulating Public Policy / Other Social Engineering

No.	Titles / Themes / Other Types of Social Engineering That Have Been Implemented	Year	Place of Application of	Community Response
1.	Become a Consultant in the Agricultural Sector Policy Analysis of Yogyakarta Province 2011	2011	Areas affected by the eruption of Merapi Kab. Sleman	Good
2.	Become a Consultant for Animal Husbandry Development Master Plan inGunungkidul Regency	2016	District. Gunungkidul	Baik
3.	Become a member of the Regional Research Council of Magelang Regency	2016 - 2018	Kab. Magelang	Good
4.	Become a member of Poverty Alleviation Kab. Magelang	2017- 2018	District Region. Magelang	Good

K. Award in the last 10 years (from government, association or other institutions)

No.	Type of Award	Institution Awarding	Year	No.
1.	Service for 25 years of	UMBY	2015	743 / A.29 / Rek / X / 2015
2.	Best Service III	UMBY	2016	1348 / C.01 / Rek / IX / 2016
3.	Best Service II	UMBY	2017	193 / LPPM / UMBY / IX / 2017

All data that I have filled in and included in this biodata are true and can be accounted for legally. If in the future there is a disagreement with reality, I can accept sanctions.

This is the biodata that I actually made to fulfill one of the requirements in submitting the PPM Proposal for 2021

Yogyakarta, 24 January 2021

Compiler,

Ir. Nur Rasminati, MP

Biodata of Members (2)

A. Personal Identity

1.	Full name (with title)	Ir. Setyo Utomo, MP
2.	Gender	M /F
3.	Functional Position of	Head Lector
4.	NIP / NIK / Other Identity	19671216 1992031 004
5.	NIDN	0016126701
6.	Place and Date of Birth of	Purbalingga, December 16, 1967
7.	E-mail	esutama_set @ yahoo.com
8.	Phone Number / HP	082138454463/081804120398
9.	Office Address of	Animal Husbandry Study Program, Faculty of Agro-industry, University of Mercu Buana Yogyakarta Jl. Wates Km. 10 Yogyakarta 55753
10.	Phone / Fax Number	(0274) 6498211, 6494212 / (0274) 6498213
11.	E-mail	-
12.	Graduates who	$S-1 = 180$ people; $S-2 = \dots$ people; $S-3 = \dots$ people
13.	Subjects taught are	 Basic Animal BreedingAnimal ManagementBreedingAnimal Biogas Technology ReproductionAnimal Introduction toScience Animal Reproduction Biotechnology

B. Education Background

	S1	S2	S3
College Name of	Jenderal Soedirman University	Gadjah Mada University Yogyakarta	
Field of Science	Animal Production	Animal Science	
Year of Entry -	1986-1991	1994-1997	
Passed			
Title of Thesis /	Effect of nitrogen fertilizer dosage on	Effect of Beltsville Poultry	
Thesis /	ash and coarse fiber content of King	Semen Extender (BPSE) on	
Dissertation	Grass (Pennisetum phurpureophoides)	Fertility and Hatchability of	
		Chicken	
Advisor /	1. Ir .Pudjiarti, SU.	1. Dr.Ir. Kustono, M.Sc.	
Promoter Name	2. Ir.Tri Raharjo, MS.	2. Dr. Ir. Tri Yuwanta, SU.,	
	3. Ir.Bahrun	DEA.	

C. Research Experience In The Last 5 Years

			Funding	
No.	Year	Title of Research	Source *	Qty
				(million
				Rp)
1.	2015	Selection of Substitute Parent Candidates for	UMB Yogya	1,25
		Local Sheep Based on Records of Weight		
		Weaning, Reproduction Records and		
		Parent Litters in Munggangsari Village,		
		Kaliangkrik.		
2.	2016	Genetic Quality and Reproduction Performance	PakisUMBY	4,725
		of Local Sheep owned by Poor Households		
		(RTM) inDistrict, Magelang		
3.	2017	Potential Development of Goats for Poverty	UMBYStorage	4,20
		Alleviation in Kec. Windusari, Magelang		
4	2018	Effect of Aluminum Foil Packaging	Research and	50.00
		andTemperature of local sheep semen on Sperm	Technology DIKTI	
		Quality and Pregnancy Rate (PTUPT) year 1		
		ofStorage		
5.	2019	Effect of Aluminum Foil Packaging	Research and	158.00
		andTemperature of local sheep semen on Quality	Technology DIKTI	
		sperm and pregnancy rate (PTUPT) year 2		

D. Experience of Community Service in the Last 5 Years

			Funding	
No.	Year	Title of Community Service	Source *	Qty
				(million
				Rp)
1.	2015	IbW Kaliangkrik District (Year III, Chair)	DP2M Dikti	100
			TA. 2015	
2.	2016	IbW Pakis District for Poverty Alleviation	Program IbW	100
			TH. II DP2M	
			Dikti TA. 2016	
3.	2017	IbW Windusari District 1st year (chairman)	IbW TH	135
			Program. II	
			DP2M Dikti	
			TA. 2017	
4.	2018	Awareness of the Importance of Sheep Reproductive	UMBY	5
		Management and Breeding Techniques for the		
		Community of Ngemplak and Sreyal Hamlets,		
		Ngemplak Village, Kec. Windusari, Magelanng.		
5.	2019	Implementation of Breeding Technology	UMBY	10.55
		(<i>Technobreeding</i> Goat) for Poverty Alleviation in		

			Tempak Village, Kec. Candimulyo, Magelang		
--	--	--	---	--	--

E. Publication of Scientific Articles in Journals in the Last 5 Years

No.	Title of Scientific Article	Name of Journal	Volume / Number / Year
1.	Productivity of Beef Cattle on the Slopes of Merapi, Kec. Dukun Magelang	Proceedings of the National Seminar on Animal Husbandry Development Based on Local Resources to Face the ASEAN Economic Community (AEC) Fapet. UNSOED Purwokerto, 30 - 31 May 2015	ISBN: 978-602-1004-09-8
2.	The potential for sheep development in Gunungkidul district (KETUA) (p: 251)	Proceedings of the National Seminar on Animal Husbandry II, Master Program in Animal Science UNDIP, 12 May 2016	ISBN: 978-602-72086-2-9
3.	Performance Evaluation and Development Potential of Local Sheep in Kaliangkrik District (member) (p: 243)	Proceedings of the National Seminar on Animal Husbandry II, Masters Study Program in Animal Science UNDIP, May 12 2016	ISBN: 978-602-72086-2-9
4.	Science and technology for the Banyusidi Village Community for Poverty Alleviation through Kampung Chickens Agribusiness.	Journal of Abdimas Institute for Research and Community Service (LP2M) State University	[p-ISSN: 1410-2765 e- ISSN 2503-1252] Vol 20, No 2
5.	Poverty Alleviation through the Babonization System of native chickens in the IbW program, Pakis Magelang District (Member)	Journal of INOTEKS Publisher LPPM UNY Volume 21, No. 2, August 2017	ISSN: 14411-3554
6.	Evaluation of Performance and Potential Development of Local Sheep in Kaliangkrik District	Journal of Agricultural Science and Technology A <u>http://www.davidpublisher.com</u>	Vol. 7, No. 7, July 2017 (Serial Number 65) ISSN 2161-6256 DOI: 10.17265 / 2161- 6256 / 2017.07.006 pp. 501-506
7.	Implementation of Technobreeding and	Jurnal Dharma Bhakti IST AKPRIND,	https://journal.akprid.ac.id 1/4/2018

	Techofeeding based on local wisdom		
8.	The Development potential of goat for poverty reduction in windusari subdistrict, Magelang regency	IOP Conferences Series: Earth and Environmental Science 379 (1) 012009	Indexed Scopus Year 2019
9.	Application of technology and technology for sheep farming for the community of Ngemplak village, Windusari sub- district, Magelang	Semnas PPM LPPM UMBY, Work for the country: Implementation of technology for community empowerment towards a society era 5.0	Bookchapter publisher Mbridge Press ISBN

F. Speaker on Scientific Seminar (Oral Presentation) in the Last 5 Years

No.	Name of Scientific Meeting / Seminar	Title of Scientific Article	Time and Place
1.	National Seminar on the results of 2015 research on	Beef Cattle Productivity on the Slopes of Merapi, Dukun Magelang District,	Faculty of Animal Husbandry, UNSOED.
2.	Semnas Unsoed 2015Materials on	Influence of <i>Complete Feed</i> with Local RawSheep Growth,	Faculty of Animal Husbandry, UNSOED.
3.	National Seminar on Animal Awakening II for Master Program in Animal Science UNDIP, 12 May 2016	Potential Development of Sheep in Gunungkidul Regency (p; 251)	UNDIP Animal Science Masters Study Program, Semarang, 2016
4.	National Seminar on Research Results at Undip, 2016	Potential Development of Goats in Gunungkidul Regency	Post-Graduate UNDIP, Semarang, 2016
5.	UMBY International Seminar	The development potential of goat for poverty reduction in Windusari subdistrict, Magelang regency	UMBY Yogyakarta, 2018
6.	Presenters at the National Seminar: Working for the Country: Implementing Technology for Community Empowerment Towards Society Era 5.0. In 2019, the	Influence of the Nation of Local Rams and Different Packaging on 5°C Storage on Sperm Motility of	Fikom UMBY 31 October 2019
7.	Presenters at the National Seminar: Working for the Country:	Implementation of Sheep Technobreeding and	Fikom UMBY 31 October 2019

Implementation o	f Technology for	Technofeeding for the	
Community Empo	owerment	Community of Ngemplak	
Towards a Society	y 5.0 Era.	Village, District, Magelang	
Year 2019			

G. Book work for the last 5 years

No	Title of Book	Year	Number of	Publisher
			Pages	
1.	BIOTECHNOLOGY ANIMAL REPRODUCTION	2018	181	OF Mbridge Press UMBY No.ISBN: 978 -602-52470-3-3
2.	INTRODUCTION TO ANIMAL SCIENCE	2018	155	Mbridge Press UMBY No.ISBN: 978-602-5247-0-19

H. Acquisition of IPR in the last 5-10 Years

No	Title / Theme IPR	Year	Туре	Number P /
				ID
1.	POTENTIAL FOR THE DEVELOPMENT oF SHEEP	2019	Copyright	000 159
	IN THE DISTRICT GUNUNGKIDUL YOGYAKARTA,			600
	May 12, 2016 Publication			
2	THE POTENTIAL DEVELOPMENT oF GOAT FOR	2019	Copyright	000 159
	POVERTY REDUCTION IN Windusari Subdistrict,			601
	Magelang REGENCY, publication 14 November 2018,			
	Yogyakarta			
3	Evaluation of Performanceand potential development of	2019	Copyright	000159604
	Local sheep ink Publication 6 July 2017 in New York			
4	EFFECT OF LOCALCOMPLETE FEED ON SHEEP	2019	Copyright	000159603
	GROWTH, Publication 7 September 2015 in Purwokerto			

I. Experience Formulating Other Public / Social Engineering Policies in the Last 5 Years

No.	Titles / Themes / Other Types of Social	Year	Place for	Community
	Engineering That Have Been Implemented			Response
1.	Head of the Formulating Team at the Animal	2003	All Indonesia	Good
The	Husbandry Department for policy input from the			
	Director General of Animal Husbandry regarding			
	Bachelors in Village			
2.	DevelopmentConsultation for the preparation of	2016	, Gunungkidul	both
	Master Plan for Animal Husbandry Development		Regency	
	in Gunungkidul			

J. Awards in the last 10 years (from government, association or other institutions)

	No.	Type of Award	Institution Awarding	Year	No.
--	-----	---------------	----------------------	------	-----

1.	Lecturer with Level I Wangsa	Rector of UNWAMA	2002	781 / A.03 / Rek / X
	Manggala University Yogyakarta			/ 02
2.	Exemplary Lecturer I Kopertis	Kopertis Region V	2002	1518B / KOP.V /
	Region V Yogyakarta			B.1 / VIII / 2002
3.	Satya Karya Satya XX Award for	President of the	2012	62 / TK / TAHUN
	the	Republic of Indonesia		2012

All data that I have entered and included in this biodata are true and can be accounted for legally. If in the future there is a disagreement with reality, I can accept sanctions.

Thus, I made this biodata actually to fulfill one of the requirements in submitting a PPM proposal in 2021.

Yogyakarta, January 24, 2021 Composers,

Ir. Setyo Utomo, MP

Biodata of Members (3)

A. Personal Identity

1.	Full name (with	Nurul Hidayat, S.Pt., M.Sc.
2	Gender	Male
2. 3	Functional	Asisten
5.	Position of	Asisten
4.	NIP / NIK /	-
	Other Identity	
5.	NIDN	
6.	Place and Date	Selakau, April 15, 1995
	of Birth of	
7.	E-mail	Nurulhidayat95@mail.ugm.ac. Id
		Nurulhidayatuul@gmail.cim
8.	Telephone	+62 895 2016 5474
	Number / HP	
9.	Office Address	Animal Husbandry Study Program, Faculty of Agroindustry, University
	of	of Mercu Buana Yogyakarta Jl. Wates Km. 10 Yogyakarta 55753
10.	Telephone / Fax	(0274) 6498211, 6494212 / (0274) 6498213
	Number	
11.	E-mail	-
12.	Graduates who	$S-1 = \dots$ people; $S-2 = \dots$ people; $S-3 = \dots$ people
	have earned	
13.	Subjects taught	
	in	

B. Education History

	S1	S2
Name College	Mercu University Buana	Universitas Gadjah Mada
	Yogyakarta	
	(UMBY)	
Field of	Animal Science	Master of Animal Science
Graduation Year	2013-2017	2018-2019
Thesis Title / Final	Effect of Fermented Palm	Effect of Dayak Onions (Eleutherine
Project / Thesis /	Kernel Cake by Candida	palmifolia L.Merr) and Storage Time on pH,
Dissertation	utilis in the Ratio on	Chemical Compotition, Sensory Quality,
	Performance of Local Lying	DPPH Value, Total Microbes, and Peroxides
	Duck	Value of Rejected Duck Nugget
Name of	Ir. Sonita Rosningsih, M.S.	Ir. Rusman, M.P., Ph.D
Supervisor /	Dr. Ir. Sundari, M.P.	Ir. Edi Suryanto, M.Sc., Ph.D., IPU.,
Promoter		ASEAN Eng.

C. Work History

No	Work Unit	Starting from to	Position
1.			
2.			
3.			

D. Research Experience in the Last 4 Years

				Funding	
No.	Year	Title Research	Source *	Qty	
				(million	
				Rp)	
1.	2017	Effect of Fermented Palm Kernel Cake by Candida utilis in	DIKTI	70	
		the Ratio on Performance of Local Lying Duck			
2.	2019	Effect of Dayak Onions (Eleutherine palmifolia L.Merr)	Self	20	
		and Storage Time on pH, Chemical Compotition, Sensory	Funded		
		Quality, DPPH Value, Total Microbes, and Peroxides			
		Value of Rejected Duck Nugget			

E. Experience of Community Service in the Last 4 Years

No.	Year	Title Community Services	Funding	
			Source *	Quantity (million US \$)
1.				

F. Publication of scientific articles in the journal in 4 years Last

No.	Title of Scientific Article	Name of Journal	Volume /
			Number /
			Year
1.	The Effect of Fresh Dayak Onion	Proceedings of The International	2020
	(Eleutherine palmifolia L. Merr)	Conference on Environmentally	
	and Storage Time on	Sustainable Animal Industry (ICESAI)	
	Rejected-Duck Nuggets		

G. Speakers of Scientific Seminar (Oral Presentation) in the Last 4 Years

No.	Name of Scientific Meeting / Seminar	Title of Scientific Article	Time and Place
1.	Proceedings of The International	The Effect of Fresh Dayak	Malang, 18-19
	Conference on Environmentally	Onion (Eleutherine palmifolia	November
	Sustainable Animal Industry (ICESAI)	L. Merr) and Storage Time on	2020
		Rejected-Duck Nuggets	

H. Book Works in the Last 4 Years

No	Title ofBook	Year	Number of Pages	Publisher
1.				
2.				

I. IPR Acquisition in the Last 4 Years

No	Title / Theme IPR	Year	Туре	P / ID Number
1.				
2.				

J. Experience Formulating Public Policy / Other Social Engineering in the Last 7 Years

			<u> </u>	
No.	Title / Theme / Other Types of Social	Year	Place of	Community
	Engineering That Have Been Implemented		Application for	Response
1.				
2.				

K. Award in the last 4 years (from government, association or other institution)

No.	Type of Award	Institution Awarding	Year
1.	The Best Graduate with High GPA from Animal Science,	UMBY	2017
	UMBY.		
2.	The Fastes Graduate from Animal Science, UGM	UGM	2019
3.	Delegate from The Country of Ghana on Global Milenial	MUN	2020
	Model United Nation		

All data that I have entered and included in this biodata are true and can be accounted for legally. If in the future there is a disagreement with reality, I can accept sanctions.

Yogyakarta, 26 January 2021

Composers, Amueem

Nurul Hidayat, S.Pt., M.Sc.

Attachment 4. Statement letter from the head of proposer

I, which is signed below:

costs.

Name	: Ir. Ajat Sudrajat, S.Pt., M.Pt., IPP.	
NIDN	0512059501	
Rank / Group	: IIIb	
Functional Position	: Lecturer	
I hereby declare that my research proposal is entitled:		

The Quality of Post Thawing Spermatozoa of Indigenous Indonesian and Philippines Cattle using Ice Cube and Salt as an Alternative of Liquid Nitrogen proposed in the joint venture international research in 2021 is original and has never been financed by other institutions / funding sources. If in the future there is a discrepancy with this statement, then I am ready to accept the consequences in accordance with the applicable provisions and return all research

Thus this statement is made truthfully and truthfully.

Yogyakarta, 28 January 2021 Who make the statement

154748801 $\mathbf{0}\mathbf{0}$

Ir. Ajat Sudrajat, S.Pt., M.Pt., IPP. NIDN: 0512059501

STATEMENT OF COOPERATION AVAILABILITY

I the undersigned:

Name	: Dr. Maryneth B. Barios
Address	: Capiz, Philippines
Institution	: Faculty of Animal Husbandry Capiz State University, Philippines
No. HP	: +639516467629

Hereby declare that I am willing to join the research team with the research team from Mercu Buana University Yogyakarta, Indonesia.

Name of chairman	: Ir. Ajat Sudrajat, S.Pt., M.Pt., IPP.
NIDN	0512059501
Institution	: Animal Husbandry Study Program Mercu Buana University Yogyakarta

In carrying out a joint research with the title:

"The Quality of Post Thawing Spermatozoa of Indigenous Indonesian and Philippines Cattle using Ice Cube and Salt as an Alternative of Liquid Nitrogen"

This statement is made truthfully and with actually without coercion from anyone.

Capiz Philipines, 28 January 2021 Who make the statement

Dr. Maryneth B. Barios

Attachment 5. Activity Documentation

and tools

5. Thermometer 6. Water Jacker 7. Object glass 8. Counter 9. Microscope 10. Waterbath 11. Tissue 12. etc.

Materials

Attachment 6. Submission

Livestock Research for Rural Development

A Volume 23 (2011)

1 Volume 24 (2012)

A Volume 26 (2014)

The peer-reviewed international journal for research into sustainable developing world agriculture

Published by Fundación CIPAV, Cali, Colombia

Centro para la Investigación en Sistemas Sostenibles de Producción Agropecuaria, Cali, Colombia

ISSN 0121-3784

Official Home Page: <u>http://www.lrrd.org</u> E-mail: <u>lrrd@lrrd.org</u>

Volume 1 (1989)
Volume 2 (1990)
Volume 3 (1991)
Volume 4 (1992)
Volume 5 (1993)
Volume 6 (1994)
Volume 7 (1995)
Volume 8 (1996)
Volume 9 (1997)
Volume 10 (1998)

÷ :

🕮 16.42 (0 menit yang lalu) 🛛 🏠

Ajat Sudrajat <ajat@mercubuana-yogya.ac.id> kepada reg.preston ▼

Dear Professor T R Preston, Ph.D., D.Sc. Senior Editor in LRRD

in Colombia

Good afternoon. We hope Prof. T R Preston, Ph.D., D.Sc., is always healthy, happy doing the activity every day. I am Ajat Sudrajat from the Faculty of Agoindustry, Universitas Mercu Buana Yogyakarta, Yogyakarta, Indonesia. I would like to submit our paper with entitle "The Quality of Post Thawing Spermatozoa of Indigenous Indonesia Cattle Using Ice Cube and Salt As an Alternative Of Liquid Nitrogen".

Authors: Ajat Sudrajat, Nur Rasminati, Setyo Utomo, Nurul Hidayat and Eka Rizky Vury Rahayu, Maryneth B. Barrios and Leah A. Ingalla

Affiliation: Faculty of Agroindustry, Universitas Mercu Buana Yogyakarta and Faculty of Animal Science, Universitas Gadjah Mada and Facultu of Animal Science Capiz State University Philipina.

In our study, we use ice cube and salt as an alternative of liquid nitrogen. Especially reduces costs in Indonesia. Based on the results, we found that ice cube + 50% salt in 2 hours show good result.

However, ice cube + 50% salt is unable to replace control as alternative of liquid nitrogen.

We hope our paper can be Accepted and Published in Livestock Research for Rural Development

Kind Regards, Ir. Ajat Sudrajat, S.Pt., M.Pt., IPP. Lecturer and Researcher (Dosen dan Peneliti) Departement of Animal Science, Faculty of Agroindustry Universitas Mercu Buana Yogyakarta

The quality of post thawing spermatozoa of indigenous Indonesia cattle stored usingice cube and salt as an alternative of liquid nirogen

Ajat Sudrajat, Nur Rasminati, Setyo Utomo, Nurul Hidayat¹, Eka Rizky Vury Rahayu¹, Maryneth B. Barrios² and Leah A. Ingalla²

Faculty of Agroindustry, Universitas Mercu Buana Yoryakarta, Jalan Wates km 10, Agromulyo, Sedayu, Bantul, Yogyakarta, 55752, Indonesia

ajat@mercubuana-yogya.ac.id / sudrajatajat135@mail.ugm.ac.id

¹Faculty of Animal Science, Universitas Gadjah Mada, Jalan Fauna No. 3 Bulaksumur Yogyakarta, 55281, Indonesia

² Faculty of Animal Science, Capiz State University, Iloilo East Coast-Capiz Rd, Pilar, 5804 Capiz, Philipina

Abstract

The main obstacle in the implementation of Artificial Insemination (AI) is the absence of cheap and effective field tools or flasks that can maintain the quality of frozen sperm during AI implementation. So far, inseminators always use flasks with liquid nitrogen to bring frozen straw into the field. So that it is higher cost and ineffective. The purpose of this study was to determine the storage time of frozen sperm in a field thermos with ice cooling and table salt in various ratios of the effect on the quality of semen from Pasundan cattle from West Java. The research will be carried out from March to August 2021 at the Balai Inseminasi Buatan (BIB) Lembang, West Java and the Laboratory of Biotechnology and Reproduction, Universitas Mercu Buana Yogyakarta. The research used frozen semen straws in the form of mini straw from the Pasundan cattle breed, which was produced by the BIB Lembang. The research used an experimental method with a completely randomized design with a unidirectional pattern, namely ice and salt ratio with 3 replications. T0 for control, T1 for ice cubes + 30% salt, T2 for ice cubes + 40% salt and T3 for ice cubes + 50% salt. Each treatment is stored for 0, 2, 4, 6 hours. To determine the difference in motility in the treatment of the ratio of ice and salt in a field flask, analysis of variance was carried out. If there is a difference, continue with the Duncan's Multiple Range Test (DMRT) difference test. The use of storage media filled with liquid nitrogen had a higher motility rate (p<0.05) compared to a mixture of ice cubes and salt (T1, T2 and T3). The use of liquid nitrogen (T0) was higher viability (p<0.05) compared to a mixture of ice cubes and salt (T1, T2 and T3). However, the use of ice cubes and salt at all levels (T1, T2 and T3) showed no significant difference (p<0.05). Viability of spermatozoa decreased by 29.62%. The results showed that the average mass movement of spermatozoa ranged between good and sufficient categories, this could occur because treatment using salt and ice caused cold shock. Extreme temperature changes that occur, namely from a temperature of -196^oC (liquid nitrogen temperature) to the temperature of the ice cube and salt treatment in the thermos, which is -15° C. make most of the spermatoza dead. T3 shown the best rwsults for the variable motility, viability and wave motion.

Key words : Pasundan Cattle, Ice cube, Salt, Quality of spermatozoa

Introduction

The development of the livestock sub-sector plays a crucial role in supplying the nutritional needs of the Indonesian people, which in 2004 amounted to more than 220 million. The provision of nutritional needs derived from livestock products such as eggs, meat, and milk has not been fully provided domestically. Some products such as meat and milk still have to import from abroad (Anonymous, 2000). The development of the integrated livestock sub-sector at this time must be directed to the orientation of agrAIusiness and agro-industry. In line with this program, the use of superior seeds is necessary to ensure business continuity, both in productivity and business sustainability. The fulfillment of community needs for quality and sustainable livestock meat is really a solution to a problem that exists both at the community level and at the national level (Anonymous, 2000).

The appearance of livestock potential is fundamentally influenced by two main factors: genetic and environmental factors, including the overall maintenance management. It is known that the environment and adequate management handling or following the needs of the livestock will not give the expected production expression (quality or quantity) if the good genetic potential of livestock does not support it. Furthermore, vice versa, if the livestock has good genetic potential, it will not be expressed optimally if the maximum environment and management do not support it. Thus, these two factors should receive equal attention in the maintenance of livestock commodities. Raising livestock with high genetic value accompanied by good management will certainly provide optimal results both in terms of production and business efficiency (Syukur, 2006).

Cows are livestock that is widely known by the general public, especially in rural areas. Cows in Indonesia are generally raised by farmers traditionally (from generation to generation), so that their development is fully in the midst of farmers (Utomo and Nur R., 2012). Beef cows are one of the resources for producing food in the form of meat, which has high economic value and is important for people's lives. A group of cattle can produce various kinds of needs, especially as a food ingredient in the form of meat and other by-products such as manure, leather, etc. (Sugeng, 2002). Furthermore, it is stated that based on their origins, cows are broadly classified into 3 groups, namely: Indicus bosses (Zebu cattle = humps), Taurus bosses (European cows), and Bos Sondaicus (bull bulls / BAIos cows).

The need for animal protein from livestock in Indonesia is 5.4 g / capita/day. Based on these needs, Indonesians must consume 9.6 kg/cap/year of meat, 3.5 kg/cap/year of eggs, and 4.6 kg/capita/year of milk. The field's real conditions show that the Indonesian people can only meet animal protein consumption from livestock, an average of 3.47 g / capita/day (Harmadji, 1999). Conservation of genetic resources needs to be carried out with two considerations, namely the increasing demand for livestock products, especially in developing countries as the FAO predicts a 2-fold increase in demand for meat in the 30 years from 2000 to 2030 and the increasing demand for milk is more of two times, as well as the rapid reduction in almost all over the world of genetic resources (germplasm) (Subandriyo, 2006).

The implementation of AI (Artificial Insemination) in Indonesia began nationally in 1972. Through this AI activity, it is hoped that it will improve the genetic quality of local livestock breeds, so it is hoped that the cattle owned by the Indonesian people can gradually improve their genetic quality. In the development of national nurseries, the problems faced are how to increase the number of livestock breeds in good quality, the linkage and interdependence of breeding actors to provide livestock seeds in the number, type, and quality according to needs (Bahri, 2006). At the beginning of the AI implementation in Indonesia (1972 to 1973), using liquid semen (fresh). AI with fresh semen was felt to be very slow in development, so in 1973 with the help of frozen semen from the British and New Zealand governments, the use of frozen semen in straw (plastic straw) packaging was introduced. Since the use of frozen straws, AI development is very rapid to date, especially after the operation of BBAI in Lembang and Singosari as a producer of frozen straw, especially superior cow semen.

The main obstacle in implementing AI is the absence of cheap and effective field tools/flasks that can maintain the quality of frozen sperm in a straw when going to AI right. So far, inseminators always use flasks with liquid nitrogen in them to bring frozen straw to the field. So that costs are higher and less effective because liquid nitrogen is expensive and has limited availability. So it is necessary to create a tool with cheap cooling material but has the ability to maintain the quality of frozen sperm in a relatively long time.

Materials and Methods

Time and Place of Research

The research will be carried out from March to August 2021 at the Laboratory of Biotechnology and Reproduction UMBY, BIB Lembang and the Animal Reproduction Laboratory, UGM.

Materials and tools

The research used frozen cement straws in the form of mini straw from the Pasundan cattle breed, which was produced by the BIB Lembang Beef Cattle Livestock, West Java. The research used an experimental method with a completely randomized design with a unidirectional pattern, namely ice and salt ratio with 3 replications. A total of 432 mini frozen cement straws, while the tools used include ice flasks, water jacket tubes, thermometers, microscopes, glass objects, cover glass, heating tables, and stationery.

The research method used an experimental method with the basic completely randomized design with a unidirectional pattern, namely the ratio of ice cube vs. salt. The research will be repeated 3 times.

How it Works : A total of 432 mini straws of frozen semen from Pasundan cattle were distributed in 48 flasks with a capacity of 750 ml made of stainless which were filled with nitrogen as T0 (control), T1: ice cubes + 30% salt, T2: ice cubes + 40% salt and T3: ice cubes + 50% salt. The straw is put into the water jacket in a large test tube then placed in the thermos standing up. Each flask contains 9 straws, which will be checked for motility (%) every 0, 2, 4, 6 hours of storage. Motility examination on the heating table using a microscope with a magnification of 10 x 40 times by looking at the spermatozoa object compared to spermatozoa that are not moving or moving but not progressive forward.

Data Analysis

To determine the difference in motility in the treatment of the ratio of ice and salt in a field flask, analysis of variance was carried out. If there is a difference, continue with the Duncan's Multiple Range Test (DMRT) difference test.

Results and Discussion

Post thawing motility

Motility is the movement of spermatozoa that can be used as a reference in assessing the quality of spermatozoa for artificial insemination (Bintara, 2011). The results of the complete examination of sperm motility of Pasundan cattle and BIB production in Lembang are presented in Table 1.

Table 1. Spermatozoa	motility of	Pasundan	cattle
----------------------	-------------	----------	--------

Treat		Storage time (hours)			
ment	0	2	4	6	Average
T0	50.00 ± 10.00	67.50 ± 2.50	58.33 ± 2.88	48.33 ± 2.88	$56.04^{\circ} \pm 9.13$
T1	50.83 ± 10.10	30.00 ± 5.00	16.66 ± 2.88	11.66 ± 2.88	$27.29^{a} \pm 16.63$
T2	52.50 ± 2.50	30.00 ± 17.32	18.33 ± 2.88	13.33 ± 5.77	$28.54^{\rm a} \pm 17.66$
T3	51.66 ± 9.46	40.83 ± 2.88	28.33 ± 5.20	24.16 ± 5.20	$36.25^{b} \pm 12.40$
Averag	$51.25^{z} \pm 7.42$	$42.08^{y} \pm 17.83$	$30.41^{x} \pm 17.73$	$24.37^{x} \pm 24.31$	
0					

T0 for nitrogen, T1 for ice cube + 30% salt, T2 for ice cube + 40% salt, and T3 for ice cube + 50% salt

^{abc} different superscript in the same column show significant differences (p<0.05)

^{xyz} different superscript in the same line show significant differences (p<0.05)

Based on these results, it shows that the media and storage time have a significant effect (p<0.05) on spermatozoa motility in T0 and T3 treatments, while T1 and T2 treatments are not significantly different (p>0.05). The use of storage media filled with liquid nitrogen had a higher motility rate (p<0.05) compared to a mixture of ice cubes and salt (T1, T2 and T3). This is because when the straw is stored with liquid nitrogen, the metabolism of spermatozoa cells can be said to stop, the metabolism of spermatozoa cells will increase along with the increase in temperature. Storage of semen in media with temperatures ranging from 3-4°C, metabolism is still running but very slowly, because it is far below the physiological temperature (38°C). The longer the storage time, the more use of nutrients between spermatozoa as a result of ongoing metabolism, this causes the availability of nutrients to be depleted. A large number of spermatozoa will accelerate the use of nutrients for the purposes of spermatozoa metabolism, so that nutrients will be quickly depleted and the production of ATP (adenosine triphosphate) in the mitochondria will be inhibited so that it can affect the motility of spermatozoa (Hayati, 2011).

The results of the research on the motility of the sperm of Pasundan cattle stored in a thermos with a storage medium of a mixture of salt and ice cubes showed that the best average motility that entered the SNI standard (Indonesian National Standard) was 40.83% in the T3 treatment

(ice cubes + 50% salt) for a long time. two hours of storage, while the other motility averages were still below the SNI standard or their motility was below 40% except at zero hours of storage. This is because treatment using a mixture of salt and ice cubes causes cold shock. Changes in temperature that occurred, namely from -196°C (liquid nitrogen temperature) to the temperature of ice cubes and salt treatment in the thermos, namely -15°C, made most of the spermatoza die and their motility decreased. According to Sonjaya et al., (2005) stated that the biggest factors that affect the decrease in sperm quality due to cold shock are temperature and pH.

Garner and Hafez (2000) stated that the motility of bovine spermatozoa ranged from 40-75%. Differences in spermatozoa motility can be caused by age in cattle, 1.5 years old has lower motility than 2 years old, this is because in 2 year old cows the primary and secondary reproductive organs are optimal (Azzahra et al., 2016). Meanwhile, according to Herdis (2005) states that the motility of spermatozoa is influenced by differences in the breed of livestock and the time of examination. Another factor that can affect motility is feed (Zulfan, 2008).

Viability of spermatozoa

The results of the examination of spermatozoa viability of Pasundan cattle and BIB production in Lembang are presented in full in Table 2.

Treatme	Storage time (hours)				Average
nt	0	2	4	6	
T0	$79.33^{h} \pm 2.56$	$74.05^{gn} \pm 6.05$	$71.24^{\text{gh}} \pm 12.78$	67.36 ^{gh} ±10.31	$72.99^{e} \pm 8.81$
T1	$72.16^{\text{gh}}\pm 5.48$	$58.05^{\text{gh}} \pm 20.56$	$52.42^{g}\pm 24.0$	$26.35^{f} \pm 12.72$	$52.24^{d} \pm 22.73$
T2	$71.50^{\text{gh}}\pm 2.17$	$67.66^{\text{gh}} \pm 8.31$	$20.17^{f} \pm 11.82$	$20.17^{f} \pm 11.82$	$47.64^{d} \pm 25.42$
T3	58.67 ^{gh} ±4.73	$65.07^{\text{gh}} \pm 11.14$	$29.83^{f} \pm 6.11$	19.91 ^f ±9.25	$43.37^{d} \pm 21.01$
Average	70.41°±8.48	66.21°±12.43	46.18 ^b ±22.81	33.44 ^a ±22.69	

Table 2. Viability of spermatozoa (%)

T0 for nitrogen, T1 for ice cube + 30% salt, T2 for ice cube + 40% salt, and T3 for ice cube + 50% salt

^{abc} different superscript in the same line show significant differences (p<0.05)

^{de} different superscript in the same column show significant differences (p<0.05)

^{fgh} different superscript in the same line and column show significant differences (p<0.05)

Based on these results, it shows that the media and storage time have a significant effect (p<0.05) on live spermatozoa. The use of liquid nitrogen (T0) was higher (p<0.05) compared to a mixture of ice cubes and salt (T1, T2 and T3). However, the use of ice cubes and salt at all levels (T1, T2 and T3) showed no significant difference (p<0.05). Viability of spermatozoa decreased by 29.62%. This percentage decrease occurred when using ice cubes and salt media (T1, T2 and T3). The percentage of spermatoza viability decreased due to damage to the plasma membrane and acrosome membrane due to the influence of cold shock. The temperature of the frozen cement storage media used in this study was different, namely M0 (-196°C). This is in accordance with Septiani et al. (2017) that the metabolic rate and motility of spermatozoa will decrease at a temperature of 3 to 5°C. Viability is the vitality of spermatozoa as an indicator of

spermatozoa quality. The viability of diluted frozen semen has at least 60 to 75% live spermatozoa (Garner and Hafez, 2000).

The storage time of 0 and 2 hours was higher (p<0.05) than 4 and 6 hours. However, the storage time of 4 hours tended to be better (p<0.05) than 6 hours. Based on the results of the study, the length of storage time decreased the viability of spermatozoa by 36.70%. The longer the storage time, the decrease in viability is also high. Spermatozoa quality is said to be good if it has a high number of live spermatozoa and <15% dead spermatozoa (Bintara, 2011).

The results of the analysis of variance showed that there was a significant interaction between the media and storage time (p<0.05). This shows that the media and the length of storage time affect each other's viability. The use of M0 with a shelf-life of 0 hours showed the highest viability compared to other treatments and T3 with the lowest curing time of 6 hours (p<0.05). The use of T1 with a storage time of 2 hours tends to be better than T2 and T3 although it is not significant.

Likewise with the long storage time of 6 hours. The percentage of viable spermatozoa is determined by the intact plasma membrane. The plasma membrane functions to protect spermatozoa organelles and transport electrolytes for spermatozoa metabolism. Damaged plasma membrane can affect the physiological function and metabolism of spermatozoa, causing spermatozoa to die. Intact plasma membrane has a correlation with spermatozoa motility, the more intact spermatozoa plasma membrane, high motile spermatozoa (Azzahra et al., 2016). In this study, the decrease in viability occurred because the spermatozoa experienced cell damage, namely changing the structure of the plasma membrane phospholipids and disrupting the permeability function of the cell membrane. If there is damage to the membrane, the metabolic process will be disrupted, the synthesis of Adenosine Tri Phosphate (ATP) does not work well and results in a decrease in the viability of spermatozoa.

Wave motion

Spermatozoa mass movement is the active movement of spermatozoa by showing undulating and massive mass movements. The mass movement scores consist of very good (3/+++), good (2/++), moderate (1/+), and bad (-) (Tambing et al., 2001). The results of the examination of the mass movement of the spermatozoa of Pasundan cattle and BIB production in Lembang are presented in Table 3.

Treatment	Storage time (hours)				Average
	0	2	4	6	
T0	2.00 ± 0.00	2.16 ± 0.28	1.83 ± 0.28	1.83 ± 0.28	1.95 ± 0.25^{b}
T1	2.00 ± 0.00	1.16 ± 0.28	1.00 ± 0.00	1.16 ± 0.28	$1.33 \pm 0.44^{\rm a}$
T2	2.33 ± 0.28	1.33 ± 0.28	1.16 ± 0.28	1.33 ± 0.28	$1.54\pm0.54^{\rm a}$
T3	2.00 ± 0.50	1.66 ± 0.57	1.33 ± 0.28	1.16 ± 0.28	$1.54 \pm 0.49^{ m a}$
Average	$2.08^{\text{y}} \pm 0.28$	$1.58^{x}\pm0.51$	$1.33^{x} \pm 0.38$	$1.37^{x} \pm 0.37$	

Table 3. Mas motion of Pasundan cattle spermatozoa

T0 for nitrogen, T1 for ice cube + 30% salt, T2 for ice cube + 40% salt, and T3 for ice cube + 50% salt

^{ab} different superscript in the same line show significant differences (p<0.05)

^{xy} different superscript in the same column show significant differences (p<0.05)

The results showed that the average mass movement of spermatozoa ranged between good and sufficient categories, this could occur because treatment using salt and ice caused cold shock. Extreme temperature changes that occur, namely from a temperature of $-196^{\circ}C$ (liquid nitrogen temperature) to the temperature of the ice cube and salt treatment in the thermos, which is $-15^{\circ}C$, make most of the spermatoza dead. The biggest exogenous factors that affect the decrease in sperm quality due to cold shock are temperature and pH (Sonjaya et al., 2005).

Cold shock that occurs due to changes in extreme temperatures and storage time in the treatment causes the metabolism of spermatozoa to run very quickly, causing the energy for locomotion to decrease and ultimately causing the spermatozoa to die. Spermatozoa will use energy for locomotion produced by accessory glands (Azzahra et al., 2016). Accessory glands will secrete plasma semen by producing several kinds of nutrients such as glucose, fructose, sucrose, citric acid, protein, potassium, sorbitol, insitol and glycerylphosphoryl-choline (GPC) which function as energy substrates for spermatozoa including sperm motility (Sujoko, 2009).

Cold shock that occurs also increases the production of lactic acid in the sperm to be high as a result of the rapid metabolic process. The high content of lactic acid in sperm will result in increased damage to the membrane that affects metabolism and the energy produced. The high amount of lactic acid will affect the increase in the osmotic pressure of the semen plasma thereby reducing the permeability of the spermatozoa membrane and increasing membrane damage. Damage to the spermatozoa membrane will affect the metabolic process and decrease the formation of energy. The reduced energy will greatly affect the activity and mobility of spermatozoa (Samsudewa et al., 2006). This is what causes the large number of dead spermatozoa. It can be concluded that the storage of spermatozoa in a thermos with salt and ice treatment was not able to maintain the mass movement of spermatozoa significantly.

Conclusion

T3 shown the best rwsults for the variable motility, viability and wave motion.

Conflict of interest

We certify that there is no conflict of interest with any financial, personal, or other relationships with other people or organization related to the material discussed in the manuscript.

Acknowledgement

The author grateful to Ministry of Research and Tecnology, Republic of Indonesia through of International Research Collaboration of Mercu Buana University, Indonesia and Capis State University, Philipines.

References

Arifin , J., Dudung Mulliadi, 2014. Potensi Sapi Rancah di Jawa Barat. Dinas Peternakan Provinsi Jawa Barat. Bandung

- Arifin, J, Sri Bandiati K, Endang Y. S, Unang Y, Asep A, Indrijani, Sulasmi. 2015. Sebaran Gen, Keseimbangan Populasi dan Ukuran Populasi Efektif Sapi Pasundan Pasca Migrasi di Majalengka. Jurnal Ilmu Ternak, Vol 15, No 2
- Azzahra, F.Y., E.T. Setiatin dan D. Samsudewa. 2016. Evaluation of Sperm Motility and Viability of Fresh Semen of Kebumen PO Bulls. Jurnal Sain Peternakan Indonesia Vol. 11 No. 2.
- **Bahri, S., 2006.** Kebijaksanaan Perbibitan Nasional Kaitannya dengan Pemanfaatan Plasma Nutfah Ternak. Direktur Perbibitan Dirjennak. Pertemuan Nasional Pelestarian dan Pengembangan Plasma Nutfah Indonesia, Fapet UGM, Agustus 2006.
- **Bintara, S. 2011.** Rasio X:Y dan Kualitas Sperma pada Kambing Kacang dan Peranakan Ettawa. Fakultas Peternakan Universitas Gadjah Madda. Yogyakarta. *Jurnal Sains Peternakaan*, 9(2):65-71.
- Dinas Peternakan Provinsi Jawa Barat. 2014. Program Pengelolaan SDGT Lokal Berkelanjutan di Jawa Barat. Bandung. Jawa Barat
- Djanuar, R., Haryati, Rachmawati, T R Tagama., 1988. Dasar-Dasar IB pada ternak sapi. Lab-Fisrep, Unsoed. Purwokero.
- Feradis., 2010. Bioteknologi Reproduksi pada Ternak. Penerbit Alfabeta, Bandung.
- Garner D.L. and E.S.E. Hafez. 2000. Spermatozoa and Seminal Plasma. In: E. S. E.Hafez (Ed.). Reproduction in Farm Animal. 7th. ed. Lippomcott Wiliams and wilkins. Philadelphia. 96-106.
- Hafez, ESE., 1987. Reproduction in Farm Animal, 4 th ed. Lea and Febiger, Philadelphia.
- Hayati A, 2011. *Spermatologi*. Surabaya : Pusat Penerbit dan Percetakan Universitas Airlangga. Surabaya.
- Hilmia N. 2013. Karakterisasi Fenotipe dan Potensi Genetika Serta Gubungannya dengan Produktivitas dan Kualitas Daging Sapi Lokal Ciamis Jawa Barat. *Tesis*. Bogor. Institut Pertanian Bogor.
- Menteri Pertanian RI. 2014. Surat Keputusan Menteri Pertanian Nomor 1051/Kpts/SR.120/10/2014 tentang Penetapan Rumpun Sapi Pasundan Jawa Barat. Kementan RI. Jakarta
- Naufal , F, Endang Yuni Setiawati dan Nono Suwarno, 2016. "Karakteristik Kualitatif Sapi Pasundan di Peternakan Rakyat" (<u>http : // Jurnal. unpad. Ac .id / ejurnal / article /</u> <u>download / 10135 / 456</u>) Acces date : 6 Oktober 2017.

Partodihardjo, S., 1992. Ilmu Reproduksi Hewan. Penerbit Mutiara, Bandung.

Salisbury, G.W. dan N. L. Van D emark. 1985. Fisiologi Reproduksi dan Inseminasi Buatan pada Sapi. Gadjah Mada University Press. Yogyakarta.

- Samsudewa, D. dan E. Purbowati. 2006. Ukuran organ reproduksi domba lokal jantan pada umur yang berbeda. Dalam: *Seminar Nasional Teknologi Peternakan dan Veteriner*. 413-418.
- Septiani, D., E. M. Effendi, Moerfiah. 2017. Penyimpanan spermatozoa pada suhu [reservasi dan berbagai pengencer semen terhadap daya tahan hidup spermatozoa. Ekologia, 17 (2): 18-23.
- Sonjaya. H, Sutomo dan Hastuti. 2005. Pengaruh Penambahan Calcium IonopHore Terhadap Kualitas Spermatozoa Kambing Boer Hasil Seksing. J. Sains & Teknologi 5 (2).
- Sujoko, H, M. H. A. Setiadi dan A. Boediono. 2009. Seleksi spermatozoa domba garut dengan metode sentrifugasi gradient densitas percoll. Jurnal Veteriner. 10 (3) : 125-132.
- Tambing, S.N, M. Gazali. dan B. Purwantara. 2001. Pemberdayaan Teknologi Inseminasi Buatan pada Ternak Kambing. Wartazoa Vol. 11, No.1.
- Toelihere, M. R. 1985. Inseminasi Buatan pada Ternak. Angkasa. Bandung.
- Utomo, S. dan N. Rasminati, 2012. Aplikasi Teknologi Terapan Inseminasi Buatan (IB) pada Kambing Peranakan Etawa (PE) di Wilayah Pantai. *Prosiding Seminar Nasional* Optimalisasi Penelitian dan Pengabdian dalam Membangun Insan Berkarakter. LPPM Universitas Negeri Yogyakarta. Hal 755-764
- Utomo, S. dan N. Rasminati, 2013. Pengaruh Perbedaan Ketinggian tempat terhadap Capaian Hasil Inseminasi Buatan pada Sapi. *Jurnal Sain Peternakan*, Prodi Peternakan UNS. Vol 11, No 1, Maret 2013. Hal : 34-42
- Utomo,S., 2004. Capaian tingkat reproduksi Sapi dan domba lokal di tingkat petani di kabupaten Bantul, *Penelitian mandiri*. Prodi Peternakan, Fakultas Agroindustri. Universitas Mercu Buana Yogyakarta.

Attachment 7. News in media online

UMBY Gelar Joint Research Progress Report dengan CAPSU

G f 🕂

Kamis (25/03/2021), Pusat Penelitian Pengabdian dan Kerjasama kepada Masyarakat (P3MK) Universitas Mercu Buana Yogyakarta (UMBY), khususnya pada Bagian Kerjasama Luar Negeri menyelenggarakan kegiatan Joint Research Progress Report yang membahas laporan dari masing-masing team Joint Research antara UMBY dan Capiz State University (CAPSU). Acara ini diselenggarakan secara online melalui zoom meeting, pukul 13.00 – 16.00 WIB. Acara ini dihadiri sejumlah 39 dosen dari UMBY dan CAPSU.

Acara dibuka oleh sambutan dari Kepala Bagian Kerjasama Luar Negeri dan juga Sambutan Rektor UMBY, kemudian arahan dari vice president of international affair yaitu Dr. Mary Martellino yang mengingatkan tentang

Mary Martellino yang mengingatkan tentang deadline penelitian dan tujuan dari penelitian yang didampingi Kepala Pusat Penelitian dan Pengembangan yaitu Dr. Eng. Efren Linan.

with link : <u>http://mercubuana-yogya.ac.id/berita-6938-umby-gelar-joint-research-progress-report-dengan-capsu</u>

with link: <u>https://www.timesindonesia.co.id/read/news/354020/umby-kolaborasi-capiz-state-</u>university-filipina-riset-pengembangan-bioteknologi-reproduksi-ternak

peternakan.mercubuana-yogya.ac.id/2021/06/18/prodi-peternakan-umby-dan-capiz-stati

Tim Peneliti joint research International UMBY-CAPZU Filipina

Prodi Peternakan Universitas Mercu Buana Yogyakarta (UMBY) dan Capiz State University (CAPZU) Filipina menjalin kerjasama riset internasional untuk pengembangan bioteknologi reproduksi ternak. Kolaborasi riset ini dilakukan di Indonesia dan di Filipina. Pada saat pertemuan perdana dengan pihak CAPZU Filipina, Ir. Ajat Sudrajat, S.Pt.,

with link : <u>http://peternakan.mercubuana-yogya.ac.id/2021/06/18/prodi-peternakan-umby-dan-capiz-state-university-capzu-filipina-jalin-kolaborasi-riset-pengembangan-bioteknologi-reproduksi-ternak/</u>